The quantum spheres and their embedding into quantum Minkowski space-time.
This note presents a new proof of an important result due to Bourgain and Tzafriri that provides a partial solution to the Kadison-Singer problem. The result shows that every unit-norm matrix whose entries are relatively small in comparison with its dimension can be paved by a partition of constant size. That is, the coordinates can be partitioned into a constant number of blocks so that the restriction of the matrix to each block of coordinates has norm less than one half. The original proof of...
We show that the range of a contractive projection on a Lebesgue-Bochner space of Hilbert valued functions Lp(H) is isometric to a lp-direct sum of Hilbert-valued Lp-spaces. We explicit the structure of contractive projections. As a consequence for every 1 < p < ∞ the class Cp of lp-direct sums of Hilbert-valued Lp-spaces is axiomatizable (in the class of all Banach spaces).
The questions when a derivation on a Jordan-Banach algebra has quasi-nilpotent values, and when it has the range in the radical, are discussed.
We investigate whether the projective tensor product of two Banach spaces and has the reciprocal Dunford–Pettis property of order , , when and have the respective property.