On differentiation of metric projections in finite dimensional Banach spaces
Consider a family of integral operators and a related family of differential operators, both defined on a class of analytic functions holomorphic in the unit disk, distortion properties of the real part are derived from a general aspect.
A complete isomorphic classification is obtained for Köthe spaces such that ; here χ is the characteristic function of the interval [0,∞), the function κ: ℕ → ℕ repeats its values infinitely many times, and . Any of these spaces has the quasi-equivalence property.
We give a description of the dual of a Calderón-Lozanovskiĭ intermediate space φ(X,Y) of a couple of Banach Köthe function spaces as an intermediate space ψ(X*,Y*) of the duals, associated with a "variable" function ψ.