Displaying 721 – 740 of 1948

Showing per page

On nuclear maps between spaces of ultradiferentiables jets of Roumieu type.

Jean Schmets, Manuel Valdivia (2003)

RACSAM

Si K es un compacto no vacío en Rr, damos una condición suficiente para que la inyección canónica de ε{M},b(K) en ε{M},d(K) sea nuclear. Consideramos el caso mixto y obtenemos la existencia de un operador de extensión nuclear de ε{M1}(F)A en ε{M2}(Rr)D donde F es un subconjunto cerrado propio de Rr y A y D son discos de Banach adecuados. Finalmente aplicamos este último resultado al caso Borel, es decir cuando F = {0}.

On operator ideals related to (p,σ)-absolutely continuous operators

J. López Molina, E. Sánchez Pérez (2000)

Studia Mathematica

We study tensor norms and operator ideals related to the ideal P p , σ , 1 < p < ∞, 0 < σ < 1, of (p,σ)-absolutely continuous operators of Matter. If α is the tensor norm associated with P p , σ (in the sense of Defant and Floret), we characterize the ( α ' ) t -nuclear and ( α ' ) t - integral operators by factorizations by means of the composition of the inclusion map L r ( μ ) L 1 ( μ ) + L p ( μ ) with a diagonal operator B w : L ( μ ) L r ( μ ) , where r is the conjugate exponent of p’/(1-σ). As an application we study the reflexivity of the components of the ideal...

On operators from separable reflexive spaces with asymptotic structure

Bentuo Zheng (2008)

Studia Mathematica

Let 1 < q < p < ∞ and q ≤ r ≤ p. Let X be a reflexive Banach space satisfying a lower- q -tree estimate and let T be a bounded linear operator from X which satisfies an upper- p -tree estimate. Then T factors through a subspace of ( F ) r , where (Fₙ) is a sequence of finite-dimensional spaces. In particular, T factors through a subspace of a reflexive space with an ( p , q ) FDD. Similarly, let 1 < q < r < p < ∞ and let X be a separable reflexive Banach space satisfying an asymptotic lower- q -tree...

On operators which factor through l p or c₀

Bentuo Zheng (2006)

Studia Mathematica

Let 1 < p < ∞. Let X be a subspace of a space Z with a shrinking F.D.D. (Eₙ) which satisfies a block lower-p estimate. Then any bounded linear operator T from X which satisfies an upper-(C,p)-tree estimate factors through a subspace of ( F ) l p , where (Fₙ) is a blocking of (Eₙ). In particular, we prove that an operator from L p (2 < p < ∞) satisfies an upper-(C,p)-tree estimate if and only if it factors through l p . This gives an answer to a question of W. B. Johnson. We also prove that if X is...

Currently displaying 721 – 740 of 1948