Displaying 741 – 760 of 1948

Showing per page

On order structure and operators in L ∞(μ)

Irina Krasikova, Miguel Martín, Javier Merí, Vladimir Mykhaylyuk, Mikhail Popov (2009)

Open Mathematics

It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.

On Ozeki's inequality.

Izumino, Saichi, Mori, Hideo, Seo, Yuki (1998)

Journal of Inequalities and Applications [electronic only]

On P -convex Musielak-Orlicz spaces

Paweł Kolwicz, Ryszard Płuciennik (1995)

Commentationes Mathematicae Universitatis Carolinae

In this paper there is proved that every Musielak-Orlicz space is reflexive iff it is P -convex. This is an essential extension of the results given by Ye Yining, He Miaohong and Ryszard Płuciennik [16].

On partial isometries in C*-algebras

M. Laura Arias, Mostafa Mbekhta (2011)

Studia Mathematica

We study similarity to partial isometries in C*-algebras as well as their relationship with generalized inverses. Most of the results extend some recent results regarding partial isometries on Hilbert spaces. Moreover, we describe partial isometries by means of interpolation polynomials.

On path integration on noncommutative geometries

Achim Kempf (1997)

Banach Center Publications

We discuss a recent approach to quantum field theoretical path integration on noncommutative geometries which imply UV/IR regularising finite minimal uncertainties in positions and/or momenta. One class of such noncommutative geometries arise as `momentum spaces' over curved spaces, for which we can now give the full set of commutation relations in coordinate free form, based on the Synge world function.

On perturbations of pluriregular sets generated by sequences of polynomial maps

Maciej Klimek (2003)

Annales Polonici Mathematici

It is shown that an infinite sequence of polynomial mappings of several complex variables, with suitable growth restrictions, determines a filled-in Julia set which is pluriregular. Such sets depend continuously and analytically on the generating sequences, in the sense of pluripotential theory and the theory of set-valued analytic functions, respectively.

On Pettis integrability

Juan Carlos Ferrando (2003)

Czechoslovak Mathematical Journal

Assuming that ( Ω , Σ , μ ) is a complete probability space and X a Banach space, in this paper we investigate the problem of the X -inheritance of certain copies of c 0 or in the linear space of all [classes of] X -valued μ -weakly measurable Pettis integrable functions equipped with the usual semivariation norm.

Currently displaying 741 – 760 of 1948