The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
444
Under the uniform asymptotic stability of a finite dimensional Ito equation with periodic coefficients, the asymptotically almost periodicity of the -bounded solution and the existence of a trajectory of an almost periodic flow defined on the space of all probability measures are established.
We extend an example of B. Aupetit, which illustrates spectral discontinuity for operators on an infinite-dimensional separable Hilbert space, to a general spectral discontinuity result in abstract Banach algebras. This can then be used to show that given any Banach algebra, Y, one may adjoin to Y a non-commutative inessential ideal, I, so that in the resulting algebra, A, the following holds: To each x ∈ Y whose spectrum separates the plane there corresponds a perturbation of x, of the form z =...
Two well-known theorems for Hermitian elements in C*-algebras are extended to Banach algebras. The first concerns the solution of the equation ax - xb = y, and the second gives sharp bounds for the distance between spectra of a and b when a, b are Hermitian.
Soit une application d’un groupe dans le groupe des opérateurs unitaires sur un espace de Hilbert. Si est un opérateur compact pour tous , quelles sont les obstructions à l’existence d’un homomorphisme avec compact pour tout ? Nous étudions ici les cas où est une somme amalgamée de groupes finis et où est un produit semi-direct d’un groupe fini par .
The notion of bi-continuous semigroups has recently been introduced to handle semigroups on Banach spaces that are only strongly continuous for a topology coarser than the norm-topology. In this paper, as a continuation of the systematic treatment of such semigroups started in [20-22], we provide a bounded perturbation theorem, which turns out to be quite general in view of various examples.
We prove a very general theorem concerning the estimation of the expression ||T((a+b)/2) - (Ta+Tb)/2|| for different kinds of maps T satisfying some general perturbed isometry condition. It can be seen as a quantitative generalization of the classical Mazur-Ulam theorem. The estimates improve the existing ones for bi-Lipschitz maps. As a consequence we also obtain a very simple proof of the result of Gevirtz which answers the Hyers-Ulam problem and we prove a non-linear generalization of the Banach-Stone...
We study the Gromov-Hausdorff and Kadets distances between C(K)-spaces and their quotients. We prove that if the Gromov-Hausdorff distance between C(K) and C(L) is less than 1/16 then K and L are homeomorphic. If the Kadets distance is less than one, and K and L are metrizable, then C(K) and C(L) are linearly isomorphic. For K and L countable, if C(L) has a subquotient which is close enough to C(K) in the Gromov-Hausdorff sense then K is homeomorphic to a clopen subset of L.
Currently displaying 61 –
80 of
444