Topics on analytic sets
In this note we determine the class of indefinite and decomposable inner product spaces in which the natural topology is admissible and we prove the continuity of orthogonal projections in these spaces.
We characterize unital topological algebras in which all maximal two-sided ideals are closed.
Let L₀(Ω;A) be the Fréchet space of Bochner-measurable random variables with values in a unital complex Banach algebra A. We study L₀(Ω;A) as a topological algebra, investigating the notion of spectrum in L₀(Ω;A), the Jacobson radical, ideals, hulls and kernels. Several results on automatic continuity of homomorphisms are developed, including versions of well-known theorems of C. Rickart and B. E. Johnson.
The aim of this paper is an investigation of topological algebras with an orthogonal sequence which is total. Closed prime ideals or closed maximal ideals are kernels of multiplicative functionals and the continuous multiplicative functionals are given by the “coefficient functionals”. Our main result states that an orthogonal total sequence in a unital Fréchet algebra is already a Schauder basis. Further we consider algebras with a total sequence satisfying and for all n ∈ ℕ.
It is shown that all maximal regular ideals in a Hausdorff topological algebra A are closed if the von Neumann bornology of A has a pseudo-basis which consists of idempotent and completant absolutely pseudoconvex sets. Moreover, all ideals in a unital commutative sequentially Mackey complete Hausdorff topological algebra A with jointly continuous multiplication and bounded elements are closed if the von Neumann bornology of A is idempotently pseudoconvex.
It is shown that every commutative sequentially bornologically complete Hausdorff algebra A with bounded elements is representable in the form of an (algebraic) inductive limit of an inductive system of locally bounded Fréchet algebras with continuous monomorphisms if the von Neumann bornology of A is pseudoconvex. Several classes of topological algebras A for which or for each a ∈ A are described.
We give general theorems which assert that divergence and universality of certain limiting processes are generic properties. We also define the notion of algebraic genericity, and prove that these properties are algebraically generic as well. We show that universality can occur with Dirichlet series. Finally, we give a criterion for the set of common hypercyclic vectors of a family of operators to be algebraically generic.
We prove that each non-separable completely metrizable convex subset of a Fréchet space is homeomorphic to a Hilbert space. This resolves a more than 30 years old problem of infinite-dimensional topology. Combined with the topological classification of separable convex sets due to Klee, Dobrowolski and Toruńczyk, this result implies that each closed convex subset of a Fréchet space is homeomorphic to for some cardinals 0 ≤ n ≤ ω, 0 ≤ m ≤ 1 and κ ≥ 0.
We show that the strong dual X’ to an infinite-dimensional nuclear (LF)-space is homeomorphic to one of the spaces: , , , , or , where and . In particular, the Schwartz space D’ of distributions is homeomorphic to . As a by-product of the proof we deduce that each infinite-dimensional locally convex space which is a direct limit of metrizable compacta is homeomorphic either to or to . In particular, the strong dual to any metrizable infinite-dimensional Montel space is homeomorphic either...
We establish the topological relationship between compact Hausdorff spaces X and Y equivalent to the existence of a bound-2 isomorphism of the sup norm Banach spaces C(X) and C(Y).