Displaying 901 – 920 of 1948

Showing per page

On Some Classes of Operators on C(K,X)

Ioana Ghenciu (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

Suppose X and Y are Banach spaces, K is a compact Hausdorff space, Σ is the σ-algebra of Borel subsets of K, C(K,X) is the Banach space of all continuous X-valued functions (with the supremum norm), and T:C(K,X) → Y is a strongly bounded operator with representing measure m:Σ → L(X,Y). We show that if T is a strongly bounded operator and T̂:B(K,X) → Y is its extension, then T is limited if and only if its extension T̂ is limited, and that T* is completely continuous (resp. unconditionally...

On some convexity properties in the Besicovitch-Musielak-Orlicz space of almost periodic functions with Luxemburg norm

Fazia Bedouhene, Amina Daoui, Hocine Kourat (2012)

Commentationes Mathematicae Universitatis Carolinae

In this article, it is shown that geometrical properties such as local uniform convexity, mid point local uniform convexity, H-property and uniform convexity in every direction are equivalent in the Besicovitch-Musielak-Orlicz space of almost periodic functions ( B ˜ ϕ a . p . ) endowed with the Luxemburg norm.

On some density theorems in regular vector lattices of continuous functions.

Francesco Altomare, Mirella Cappelletti Montano (2007)

Collectanea Mathematica

In this paper, we establish some density theorems in the setting of particular locally convex vector lattices of continuous functions de ned on a locally compact Hausdorff space, which we introduced and studied in [3,4] and which we named regular vector lattices. In this framework, by using properties of the subspace of the so-called generalized af ne functions, we give a simple description of the closed vector sublattice, the closed Stone vector sublattice and the closed subalgebra generated by...

On some equivalent geometric properties in the Besicovitch-Orlicz space of almost periodic functions with Luxemburg norm

Fazia Bedouhene, Mohamed Morsli, Mannal Smaali (2010)

Commentationes Mathematicae Universitatis Carolinae

The paper is concerned with the characterization and comparison of some local geometric properties of the Besicovitch-Orlicz space of almost periodic functions. Namely, it is shown that local uniform convexity, H -property and strict convexity are all equivalent. In our approach, we first prove some metric type properties for the modular function associated to our space. These are then used to prove our main equivalence result.

On some ergodic properties for continuous and affine functions

Charles J. K. Batty (1978)

Annales de l'institut Fourier

Two problems posed by Choquet and Foias are solved:(i) Let T be a positive linear operator on the space C ( X ) of continuous real-valued functions on a compact Hausdorff space X . It is shown that if n - 1 r = 0 n - 1 T r 1 converges pointwise to a continuous limit, then the convergence is uniform on X .(ii) An example is given of a Choquet simplex K and a positive linear operator T on the space A ( K ) of continuous affine real-valued functions on K , such that inf { ( T n 1 ) ( x ) : n } < 1 for each x in K , but T n 1 does not converge to 0.

Currently displaying 901 – 920 of 1948