Displaying 1041 – 1060 of 1071

Showing per page

Two problems of Calderón-Zygmund theory on product-spaces

Jean-Lin Journé (1988)

Annales de l'institut Fourier

R. Fefferman has shown that, on a product-space with two factors, an operator T bounded on L 2 maps L into BMO of the product if the mean oscillation on a rectangle R of the image of a bounded function supported out of a multiple R’ of R, is dominated by C | R | s | R | - s , for some s > 0 . We show that this result does not extend in general to the case where E has three or more factors but remains true in this case if in addition T is a convolution operator, provided s > s 0 ( E ) . We also show that the Calderon-Coifman bicommutators,...

Two valued measure and some new double sequence spaces in 2 -normed spaces

Pratulananda Das, Ekrem Savaş, Santanu Bhunia (2011)

Czechoslovak Mathematical Journal

The purpose of this paper is to introduce some new generalized double difference sequence spaces using summability with respect to a two valued measure and an Orlicz function in 2 -normed spaces which have unique non-linear structure and to examine some of their properties. This approach has not been used in any context before.

Two weight norm inequality for the fractional maximal operator and the fractional integral operator.

Yves Rakotondratsimba (1998)

Publicacions Matemàtiques

New sufficient conditions on the weight functions u(.) and v(.) are given in order that the fractional maximal [resp. integral] operator Ms [resp. Is], 0 ≤ s < n, [resp. 0 < s < n] sends the weighted Lebesgue space Lp(v(x)dx) into Lp(u(x)dx), 1 < p < ∞. As a consequence a characterization for this estimate is obtained whenever the weight functions are radial monotone.

Two-level t-deformation

Łukasz Jan Wojakowski (2010)

Banach Center Publications

In the present paper we define and study the properties of a deformation of measures and convolutions that works in a similar way to the U t deformation of Bożejko and Wysoczański, but in its definition operates on two levels of Jacobi coefficients of a measure, rather than on one.

Two-parameter non-commutative Central Limit Theorem

Natasha Blitvić (2014)

Annales de l'I.H.P. Probabilités et statistiques

In 1992, Speicher showed the fundamental fact that the probability measures playing the role of the classical Gaussian in the various non-commutative probability theories (viz. fermionic probability, Voiculescu’s free probability, and q -deformed probability of Bożejko and Speicher) all arise as the limits in a generalized Central Limit Theorem. The latter concerns sequences of non-commutative random variables (elements of a * -algebra equipped with a state) drawn from an ensemble of pair-wise commuting...

Two-sided Banach algebras

M. Oudadess, A. El. Kinami, A. Najmi (2001)

Δελτίο της Ελληνικής Μαθηματικής Εταιρίας

Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators

Bruno Franchi, Cristian E. Gutiérrez, Richard L. Wheeden (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we prove a two-weight Sobolev-Poincaré inequality for the function spaces associated with a Grushin type operator. Conditions on the weights are formulated in terms of a strong A weight with respect to the metric associated with the operator. Roughly speaking, the strong A condition provides relationships between line and solid integrals of the weight. Then, this result is applied in order to prove Harnack's inequality for positive weak solutions of some degenerate elliptic equations....

Two-weight weak type maximal inequalities in Orlicz classes

Luboš Pick (1991)

Studia Mathematica

Necessary and sufficient conditions are shown in order that the inequalities of the form ϱ ( M μ f > λ ) Φ ( λ ) C ʃ X Ψ ( C | f ( x ) | ) σ ( x ) d μ , or ϱ ( M μ f > λ ) C ʃ X Φ ( C λ - 1 | f ( x ) | ) σ ( x ) d μ hold with some positive C independent of λ > 0 and a μ-measurable function f, where (X,μ) is a space with a complete doubling measure μ, M μ is the maximal operator with respect to μ, Φ, Ψ are arbitrary Young functions, and ϱ, σ are weights, not necessarily doubling.

Currently displaying 1041 – 1060 of 1071