The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1161 –
1180 of
13227
We give a simple complex-variable proof of an old result of Zemánek and Le Page on the radical of a Banach algebra. Incidentally, the argument also proves a recent result of Harris and Kadison.
We prove that there exists an example of a metrizable non-discrete space , such that but where and is the space of all continuous functions from into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).
We present a simple proof of a Banach-Stone type Theorem. The method used in the proof also provides an answer to a conjecture of Cao, Reilly and Xiong.
A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces , , , , for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.
For a given unital Banach algebra A we describe joint spectra which satisfy the one-way spectral mapping property. Each spectrum of this class is uniquely determined by a family of linear subspaces of A called spectral subspaces. We introduce a topology in the space of all spectral subspaces of A and utilize it to the study of the properties of the spectra.
Currently displaying 1161 –
1180 of
13227