Displaying 1241 – 1260 of 1948

Showing per page

On the Fejér means of bounded Ciesielski systems

Ferenc Weisz (2001)

Studia Mathematica

We investigate the bounded Ciesielski systems, which can be obtained from the spline systems of order (m,k) in the same way as the Walsh system arises from the Haar system. It is shown that the maximal operator of the Fejér means of the Ciesielski-Fourier series is bounded from the Hardy space H p to L p if 1/2 < p < ∞ and m ≥ 0, |k| ≤ m + 1. Moreover, it is of weak type (1,1). As a consequence, the Fejér means of the Ciesielski-Fourier series of a function f converges to f a.e. if f ∈ L₁ as n...

On the fixed point property in direct sums of Banach spaces with strictly monotone norms

Stanisław Prus, Andrzej Wiśnicki (2008)

Studia Mathematica

It is shown that if a Banach space X has the weak Banach-Saks property and the weak fixed point property for nonexpansive mappings and Y has the asymptotic (P) property (which is weaker than the condition WCS(Y) > 1), then X ⊕ Y endowed with a strictly monotone norm enjoys the weak fixed point property. The same conclusion is valid if X admits a 1-unconditional basis.

On the fixed points of nonexpansive mappings in direct sums of Banach spaces

Andrzej Wiśnicki (2011)

Studia Mathematica

We show that if a Banach space X has the weak fixed point property for nonexpansive mappings and Y has the generalized Gossez-Lami Dozo property or is uniformly convex in every direction, then the direct sum X ⊕ Y with a strictly monotone norm has the weak fixed point property. The result is new even if Y is finite-dimensional.

Currently displaying 1241 – 1260 of 1948