On the Fourier transform and the exchange property.
We introduce some spaces of generalized functions that are defined as generalized quotients and Boehmians. The spaces provide simple and natural frameworks for extensions of the Fourier transform.
The notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of...
In this paper we solve the functional equationH [tau(F,G), chi (F,G)] = H (F,G)where the unknowns tau and chi are two semigroups on a space of distribution functions, and H is a given pointwise binary operation on this space satisfying some regularity conditions.
We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in -algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel....