The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1361 – 1380 of 1582

Showing per page

Another approach to characterizations of generalized triangle inequalities in normed spaces

Tamotsu Izumida, Ken-Ichi Mitani, Kichi-Suke Saito (2014)

Open Mathematics

In this paper, we consider a generalized triangle inequality of the following type: x 1 + + x n p x 1 p μ 1 + + x 2 p μ n f o r a l l x 1 , ... , x n X , where (X, ‖·‖) is a normed space, (µ1, ..., µn) ∈ ℝn and p > 0. By using ψ-direct sums of Banach spaces, we present another approach to characterizations of the above inequality which is given by [Dadipour F., Moslehian M.S., Rassias J.M., Takahasi S.-E., Nonlinear Anal., 2012, 75(2), 735–741].

Answer to a question by M. Feder about K(X,Y).

G. Emmanuele (1993)

Revista Matemática de la Universidad Complutense de Madrid

We show that a Banach space constructed by Bourgain-Delbaen in 1980 answers a question put by Feder in 1982 about spaces of compact operators.

Antiproximinal sets in the Banach space c ( X )

S. Cobzaş (1997)

Commentationes Mathematicae Universitatis Carolinae

If X is a Banach space then the Banach space c ( X ) of all X -valued convergent sequences contains a nonvoid bounded closed convex body V such that no point in C ( X ) V has a nearest point in V .

Currently displaying 1361 – 1380 of 1582