The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 13227

Showing per page

A conditional quasi-greedy basis of l₁

S. J. Dilworth, David Mitra (2001)

Studia Mathematica

We show that the Lindenstrauss basic sequence in l₁ may be used to construct a conditional quasi-greedy basis of l₁, thus answering a question of Wojtaszczyk. We further show that the sequence of coefficient functionals for this basis is not quasi-greedy.

A connection between multiplication in C(X) and the dimension of X

Andrzej Komisarski (2006)

Fundamenta Mathematicae

Let X be a compact Hausdorff topological space. We show that multiplication in the algebra C(X) is open iff dim X < 1. On the other hand, the existence of non-empty open sets U,V ⊂ C(X) satisfying Int(U· V) = ∅ is equivalent to dim X > 1. The preimage of every set of the first category in C(X) under the multiplication map is of the first category in C(X) × C(X) iff dim X ≤ 1.

A construction of simplicial objects

Tomáš Crhák (2001)

Commentationes Mathematicae Universitatis Carolinae

We construct a simplicial locally convex algebra, whose weak dual is the standard cosimplicial topological space. The construction is carried out in a purely categorical way, so that it can be used to construct (co)simplicial objects in a variety of categories --- in particular, the standard cosimplicial topological space can be produced.

Currently displaying 141 – 160 of 13227