The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
1072
Un -modulo hilbertiano destro su una -algebra dotato di uno -omomorfismo isometrico viene qui considerato come un oggetto della -categoria degli -moduli Hilbertiani destri. Come in [11], associamo ad esso una -algebra contenente come un «-bimodulo hilbertiano in ». Se è pieno e proiettivo finito è la -algebra , la generalizzazione delle algebre di Cuntz-Krieger introdotta da Pimsner [27] (e in un caso particolare da Katayama [31]). Più in generale, è canonicamente immersa...
In this article, we formalize continuous differentiability of realvalued functions on n-dimensional real normed linear spaces. Next, we give a definition of the Ck space according to [23].
We investigate the relations between the Campanato, Morrey and Hölder spaces on spaces of homogeneous type and extend the results of Campanato, Mayers, and Macías and Segovia. The results are new even for the ℝⁿ case. Let (X,d,μ) be a space of homogeneous type and (X,δ,μ) its normalized space in the sense of Macías and Segovia. We also study the relations of these function spaces for (X,d,μ) and for (X,δ,μ). Using these relations, we can show that theorems for the Campanato, Morrey or Hölder spaces...
We study the canonical injection from the Hardy-Orlicz space into the Bergman-Orlicz space .
It is a famous conjecture that every derivation on each Banach algebra leaves every primitive ideal of the algebra invariant. This conjecture is known to be true if, in addition, the derivation is assumed to be continuous. It is also known to be true if the algebra is commutative, in which case the derivation necessarily maps into the (Jacobson) radical. Because I. M. Singer and J. Wermer originally raised the question in 1955 for the case of commutative Banach algebras, the conjecture is...
I will explain basic concepts/problems of complex analysis in infinite dimensions, and survey the few approaches that are available to solve those problems.
Currently displaying 141 –
160 of
1072