The bidual of the space of polynomials on a Banach space.
We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever X is ℓ₁(ℂ) or c₀(ℂ). As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollobás theorem for ℓ₁(ℂ).
We introduce the Bloch space for the minimal ball and we prove that this space can be identified with the dual of a certain analytic space which is strongly related to the Bergman theory on the minimal ball.
The well-known Bohr-Pál theorem asserts that for every continuous real-valued function f on the circle there exists a change of variable, i.e., a homeomorphism h of onto itself, such that the Fourier series of the superposition f ∘ h converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings f into the Sobolev space . This refined version of the Bohr-Pál theorem does not extend to complex-valued functions. We show that if α < 1/2,...
When U is the open unit ball of a separable Banach space E, we show that , the predual of the space of bounded holomorphic mappings on U, has the bounded approximation property if and only if E has the bounded approximation property.
The main purpose of this paper is to prove the boundedness of the multidimensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As an application we prove the boundedness of certain sublinear operators on the weighted variable Lebesgue space.
The boundednees of multilinear commutators of Calderón-Zygmund singular integrals on Lebesgue spaces with variable exponent is obtained. The multilinear commutators of generalized Hardy-Littlewood maximal operator are also considered.
It is shown that the Bourgain algebra of the disk algebra A() with respect to is the algebra generated by the Blaschke products having only a finite number of singularities. It is also proved that, with respect to , the algebra QA of bounded analytic functions of vanishing mean oscillation is invariant under the Bourgain map as is .
A stronger version of almost uniform convergence in von Neumann algebras is introduced. This "bundle convergence" is additive and the limit is unique. Some extensions of classical limit theorems are obtained.