Displaying 121 – 140 of 1071

Showing per page

The Bishop-Phelps-Bollobás property for numerical radius in ℓ₁(ℂ)

Antonio J. Guirao, Olena Kozhushkina (2013)

Studia Mathematica

We show that the set of bounded linear operators from X to X admits a Bishop-Phelps-Bollobás type theorem for numerical radius whenever X is ℓ₁(ℂ) or c₀(ℂ). As an essential tool we provide two constructive versions of the classical Bishop-Phelps-Bollobás theorem for ℓ₁(ℂ).

The Bloch space for the minimal ball

G. Mengotti (2001)

Studia Mathematica

We introduce the Bloch space for the minimal ball and we prove that this space can be identified with the dual of a certain analytic space which is strongly related to the Bergman theory on the minimal ball.

The Bohr-Pál theorem and the Sobolev space W 1 / 2

Vladimir Lebedev (2015)

Studia Mathematica

The well-known Bohr-Pál theorem asserts that for every continuous real-valued function f on the circle there exists a change of variable, i.e., a homeomorphism h of onto itself, such that the Fourier series of the superposition f ∘ h converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings f into the Sobolev space W 1 / 2 ( ) . This refined version of the Bohr-Pál theorem does not extend to complex-valued functions. We show that if α < 1/2,...

The Bourgain algebra of the disk algebra A(𝔻) and the algebra QA

Joseph Cima, Raymond Mortini (1995)

Studia Mathematica

It is shown that the Bourgain algebra A ( ) b of the disk algebra A() with respect to H ( ) is the algebra generated by the Blaschke products having only a finite number of singularities. It is also proved that, with respect to H ( ) , the algebra QA of bounded analytic functions of vanishing mean oscillation is invariant under the Bourgain map as is A ( ) b .

Currently displaying 121 – 140 of 1071