Displaying 161 – 180 of 1071

Showing per page

The characteristic of weak convergence on Banach sequence lattices.

Baoxiang Wang, Tingfu Wang (1997)

Collectanea Mathematica

A sufficient and necessary condition for weak convergence of sequences in a class of Banach sequence lattices is obtained. As a direct application, a complete criterion of a weak convergence of sequences in l infinity is formulated.

The class Bpfor weighted generalized Fourier transform inequalities

Chokri Abdelkefi, Mongi Rachdi (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

In the present paper, we prove weighted inequalities for the Dunkl transform (which generalizes the Fourier transform) when the weights belong to the well-known class Bp. As application, we obtain the Pitt’s inequality for power weights.

The class of convolution operators on the Marcinkiewicz spaces

Ka-Sing Lau (1981)

Annales de l'institut Fourier

Let 𝒯 X denote the operator-norm closure of the class of convolution operators Φ μ : X X where X is a suitable function space on R . Let r p be the closed subspace of regular functions in the Marinkiewicz space p , 1 p < . We show that the space 𝒯 r p is isometrically isomorphic to 𝒯 L p and that strong operator sequential convergence and norm convergence in 𝒯 r p coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on 2 .

The classical subspaces of the projective tensor products of p and C(α) spaces, α < ω₁

Elói Medina Galego, Christian Samuel (2013)

Studia Mathematica

We completely determine the q and C(K) spaces which are isomorphic to a subspace of p ̂ π C ( α ) , the projective tensor product of the classical p space, 1 ≤ p < ∞, and the space C(α) of all scalar valued continuous functions defined on the interval of ordinal numbers [1,α], α < ω₁. In order to do this, we extend a result of A. Tong concerning diagonal block matrices representing operators from p to ℓ₁, 1 ≤ p < ∞. The first main theorem is an extension of a result of E. Oja and states that the only...

The closed Friedman world model with the initial and final singularities as a non-commutative space

Michael Heller, Wiesław Sasin (1997)

Banach Center Publications

The most elegant definition of singularities in general relativity as b-boundary points, when applied to the closed Friedman world model, leads to the disastrous situation: both the initial and final singularities form the single point of the b-boundary which is not Hausdorff separated from the rest of space-time. We apply Alain Connes' method of non-commutative geometry, defined in terms of a C*-algebra, to this case. It turns out that both the initial and final singularities can be analysed as...

Currently displaying 161 – 180 of 1071