The center of topologically primitive exponentially galbed algebras.
It is shown that every unital σ-complete topologically primitive strongly galbed Hausdorff algebra in which all elements are bounded is central
A sufficient and necessary condition for weak convergence of sequences in a class of Banach sequence lattices is obtained. As a direct application, a complete criterion of a weak convergence of sequences in l infinity is formulated.
We continue our earlier investigations of radial subspaces of Besov and Lizorkin-Triebel spaces on . This time we study characterizations of these subspaces by differences.
In the present paper, we prove weighted inequalities for the Dunkl transform (which generalizes the Fourier transform) when the weights belong to the well-known class Bp. As application, we obtain the Pitt’s inequality for power weights.
Let denote the operator-norm closure of the class of convolution operators where is a suitable function space on . Let be the closed subspace of regular functions in the Marinkiewicz space , . We show that the space is isometrically isomorphic to and that strong operator sequential convergence and norm convergence in coincide. We also obtain some results concerning convolution operators under the Wiener transformation. These are to improve a Tauberian theorem of Wiener on .
We completely determine the and C(K) spaces which are isomorphic to a subspace of , the projective tensor product of the classical space, 1 ≤ p < ∞, and the space C(α) of all scalar valued continuous functions defined on the interval of ordinal numbers [1,α], α < ω₁. In order to do this, we extend a result of A. Tong concerning diagonal block matrices representing operators from to ℓ₁, 1 ≤ p < ∞. The first main theorem is an extension of a result of E. Oja and states that the only...
The most elegant definition of singularities in general relativity as b-boundary points, when applied to the closed Friedman world model, leads to the disastrous situation: both the initial and final singularities form the single point of the b-boundary which is not Hausdorff separated from the rest of space-time. We apply Alain Connes' method of non-commutative geometry, defined in terms of a C*-algebra, to this case. It turns out that both the initial and final singularities can be analysed as...