On the WM points of Orlicz function spaces endowed with Luxemburg norm.
The concept of WM point is introduced and the criterion of WM property in Orlicz function spaces endowed with Luxemburg norm is given.
The concept of WM point is introduced and the criterion of WM property in Orlicz function spaces endowed with Luxemburg norm is given.
In this paper, we introduce the concept of WM point and obtain the criterion of WM points for Orlicz function spaces endowed with Orlicz norm and the criterion of WM property for Orlicz space.
We obtain the criterion of the WM property for Orlicz sequence spaces endowed with the Orlicz norm.
In the present paper we prove the “zero-two” law for positive contractions in the Banach-Kantorovich lattices , constructed by a measure with values in the ring of all measurable functions.
We prove that any infinite-dimensional non-archimedean Fréchet space is homeomorphic to where is a discrete space with . It follows that infinite-dimensional non-archimedean Fréchet spaces and are homeomorphic if and only if . In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field is homeomorphic to the non-archimedean Fréchet space .
A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, , such that whenever β ≤ α for all . The class of all metrizable topological groups is a proper subclass of the class of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group is metrizable, and hence G is strictly angelic. We deduce from this result...