Displaying 1641 – 1660 of 1952

Showing per page

On topological algebras

G. A. Stavrakas (1991)

Πανελλήνιο Συνέδριο Μαθηματικής Παιδείας

On topological classification of non-archimedean Fréchet spaces

Wiesƚaw Śliwa (2004)

Czechoslovak Mathematical Journal

We prove that any infinite-dimensional non-archimedean Fréchet space E is homeomorphic to D where D is a discrete space with c a r d ( D ) = d e n s ( E ) . It follows that infinite-dimensional non-archimedean Fréchet spaces E and F are homeomorphic if and only if d e n s ( E ) = d e n s ( F ) . In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field 𝕂 is homeomorphic to the non-archimedean Fréchet space 𝕂 .

On topological groups with a small base and metrizability

Saak Gabriyelyan, Jerzy Kąkol, Arkady Leiderman (2015)

Fundamenta Mathematicae

A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, U α : α , such that U α U β whenever β ≤ α for all α , β . The class of all metrizable topological groups is a proper subclass of the class T G of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group G T G is metrizable, and hence G is strictly angelic. We deduce from this result...

Currently displaying 1641 – 1660 of 1952