Displaying 1681 – 1700 of 1952

Showing per page

On unconditionally saturated Banach spaces

Pandelis Dodos, Jordi Lopez-Abad (2008)

Studia Mathematica

We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set 𝓐, in the Effros-Borel space of subspaces of C[0,1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y, with a Schauder basis, that contains isomorphic copies of every space X in the class 𝓐.

On Uniform Differentiability

S. Rolewicz (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We introduce the notion of uniform Fréchet differentiability of mappings between Banach spaces, and we give some sufficient conditions for this property to hold.

On Uniformly Convex and Uniformly Kadec-Klee Renomings

Lancien, Gilles (1995)

Serdica Mathematical Journal

We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces...

On uniformly Gâteaux smooth C ( n ) -smooth norms on separable Banach spaces

Marián J. Fabián, Václav Zizler (1999)

Czechoslovak Mathematical Journal

Every separable Banach space with C ( n ) -smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and C ( n ) -smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.

On uniqueness of distribution of a random variable whose independent copies span a subspace in L p

S. Astashkin, F. Sukochev, D. Zanin (2015)

Studia Mathematica

Let 1 ≤ p < 2 and let L p = L p [ 0 , 1 ] be the classical L p -space of all (classes of) p-integrable functions on [0,1]. It is known that a sequence of independent copies of a mean zero random variable f L p spans in L p a subspace isomorphic to some Orlicz sequence space l M . We give precise connections between M and f and establish conditions under which the distribution of a random variable f L p whose independent copies span l M in L p is essentially unique.

On unit balls and isoperimetrices in normed spaces

Horst Martini, Zokhrab Mustafaev (2012)

Colloquium Mathematicae

The purpose of this paper is to continue the investigations on the homothety of unit balls and isoperimetrices in higher-dimensional Minkowski spaces for the Holmes-Thompson measure and the Busemann measure. Moreover, we show a strong relation between affine isoperimetric inequalities and Minkowski geometry by proving some new related inequalities.

On unitary convex decompositions of vectors in a J B * -algebra

Akhlaq A. Siddiqui (2013)

Archivum Mathematicum

By exploiting his recent results, the author further investigates the extent to which variation in the coefficients of a unitary convex decomposition of a vector in a unital J B * -algebra permits the vector decomposable as convex combination of fewer unitaries; certain C * -algebra results due to M. Rørdam have been extended to the general setting of J B * -algebras.

On unitary equivalence of quasi-free Hilbert modules

Li Chen (2009)

Studia Mathematica

We characterize unitary equivalence of quasi-free Hilbert modules, which complements Douglas and Misra's earlier work [New York J. Math. 11 (2005)]. We first confine our arguments to the classical setting of reproducing Hilbert spaces and then relate our result to equivalence of Hermitian vector bundles.

Currently displaying 1681 – 1700 of 1952