On vector lattices of elementary Carathéodory functions
In this paper we deal with the vector lattice of all elementary Carathéodory functions corresponding to a generalized Boolean algebra .
In this paper we deal with the vector lattice of all elementary Carathéodory functions corresponding to a generalized Boolean algebra .
Let be the Banach space of real measures on a -ring , let be its dual, let be a quasi-complete locally convex space, let be its dual, and let be an -valued measure on . If is shown that for any there exists an element of such that for any and that the mapis order continuous. It follows that the closed convex hull of is weakly compact.
Let X be a real or complex vector space. We show that the maximal p-convex topology makes X a complete Hausdorff topological vector space. If X has an uncountable dimension, then different p give different topologies. However, if the dimension of X is at most countable, then all these topologies coincide. This leads to an example of a complete locally pseudoconvex space X that is not locally convex, but all of whose separable subspaces are locally convex. We apply these results to topological algebras,...
Given a Young function , we study the existence of copies of and in and in , the countably additive, -continuous, and -valued measure spaces of bounded -variation and bounded -semivariation, respectively.
Let be a real linear space. A vectorial inner product is a mapping from into a real ordered vector space with the properties of a usual inner product. Here we consider to be a -regular Yosida space, that is a Dedekind complete Yosida space such that , where is the set of all hypermaximal bands in . In Theorem 2.1.1 we assert that any -regular Yosida space is Riesz isomorphic to the space of all bounded real-valued mappings on a certain set . Next we prove Bessel Inequality and Parseval...
In this paper we prove a regularity result for very weak solutions of equations of the type , where , grow in the gradient like and is not in divergence form. Namely we prove that a very weak solution of our equation belongs to . We also prove global higher integrability for a very weak solution for the Dirichlet problem
A Boolean algebra has the interpolation property (property (I)) if given sequences , in with for all , there exists an element in such that for all . Let denote an algebra with the property (I). It is shown that if ( a Banach space) is a sequence of strongly additive measures such that exists for each , then defines a strongly additive map from to and the are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive -valued measures defined...
Every weakly sequentially compact convex set in a locally convex space has the weak drop property and every weakly compact convex set has the quasi-weak drop property. An example shows that the quasi-weak drop property is strictly weaker than the weak drop property for closed bounded convex sets in locally convex spaces (even when the spaces are quasi-complete). For closed bounded convex subsets of quasi-complete locally convex spaces, the quasi-weak drop property is equivalent to weak compactness....
We consider and study several weak formulations of the Hessian determinant, arising by formal integration by parts. Our main concern are their continuity properties. We also compare them with the Hessian measure.