Die Nuklearität der Ultradistributionsräume und der Satz vom Kern II.
Hans-Joachim Petzsche (1979)
Manuscripta mathematica
Hans-Joachim Petzsche (1978)
Manuscripta mathematica
Werner Strauß (1974)
Manuscripta mathematica
Dieter Keim (1971)
Collectanea Mathematica
A. Kriegl (1982)
Monatshefte für Mathematik
Gerhard Janssen (1975)
Manuscripta mathematica
Gerhard Janssen (1975)
Manuscripta mathematica
Hans Jarchow (1973)
Mathematische Annalen
H.-J. Besenfelder (1977)
Journal für die reine und angewandte Mathematik
Marian Nowak (2011)
Banach Center Publications
A bounded linear operator between Banach spaces is called a Dieudonné operator ( = weakly completely continuous operator) if it maps weakly Cauchy sequences to weakly convergent sequences. Let (Ω,Σ,μ) be a finite measure space, and let X and Y be Banach spaces. We study Dieudonné operators T: L¹(X) → Y. Let stand for the canonical injection. We show that if X is almost reflexive and T: L¹(X) → Y is a Dieudonné operator, then is a weakly compact operator. Moreover, we obtain that if T: L¹(X)...
Surjit Singh Khurana (2002)
Mathematica Slovaca
Antonio Boccuto, Xenofon Dimitriou (2019)
Kybernetika
Some versions of Dieudonné-type convergence and uniform boundedness theorems are proved, for -triangular and regular lattice group-valued set functions. We use sliding hump techniques and direct methods. We extend earlier results, proved in the real case. Furthermore, we pose some open problems.
Daniel Azagra (1997)
Studia Mathematica
Puschnigg, Michael (2003)
Documenta Mathematica
M. van der Put (1972)
Mathematische Annalen
Gaur, A.K., Mursaleen (1998)
International Journal of Mathematics and Mathematical Sciences
Dai, Jineng, Ouyang, Caiheng (2009)
Journal of Inequalities and Applications [electronic only]
(1995)
Sten Bjon (1987)
Mathematica Scandinavica
Valentino Magnani (2005)
Studia Mathematica
In the geometries of stratified groups, we provide differentiability theorems for both functions of bounded variation and Sobolev functions. Proofs are based on a systematic application of the Sobolev-Poincaré inequality and the so-called representation formula.