Displaying 161 – 180 of 437

Showing per page

Integrable functions for the Bernoulli measures of rank 1

Hamadoun Maïga (2010)

Annales mathématiques Blaise Pascal

In this paper, following the p -adic integration theory worked out by A. F. Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooij and W. H. Schikhof [6, 7] for the spaces which are not σ -compacts, we study the class of integrable p -adic functions with respect to Bernoulli measures of rank 1 . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.

Integral and derivative operators of functional order on generalized Besov and Triebel-Lizorkin spaces in the setting of spaces of homogeneous type

Silvia I. Hartzstein, Beatriz E. Viviani (2002)

Commentationes Mathematicae Universitatis Carolinae

In the setting of spaces of homogeneous-type, we define the Integral, I φ , and Derivative, D φ , operators of order φ , where φ is a function of positive lower type and upper type less than 1 , and show that I φ and D φ are bounded from Lipschitz spaces Λ ξ to Λ ξ φ and Λ ξ / φ respectively, with suitable restrictions on the quasi-increasing function ξ in each case. We also prove that I φ and D φ are bounded from the generalized Besov B ˙ p ψ , q , with 1 p , q < , and Triebel-Lizorkin spaces F ˙ p ψ , q , with 1 < p , q < , of order ψ to those of order φ ψ and ψ / φ respectively,...

Integral holomorphic functions

Verónica Dimant, Pablo Galindo, Manuel Maestre, Ignacio Zalduendo (2004)

Studia Mathematica

We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Fréchet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity.

Integral inequalities and summability of solutions of some differential problems

Lucio Boccardo (2000)

Banach Center Publications

The aim of this note is to indicate how inequalities concerning the integral of | u | 2 on the subsets where |u(x)| is greater than k ( k I R + ) can be used in order to prove summability properties of u (joint work with Daniela Giachetti). This method was introduced by Ennio De Giorgi and Guido Stampacchia for the study of the regularity of the solutions of Dirichlet problems. In some joint works with Thierry Gallouet, inequalities concerning the integral of | u | 2 on the subsets where |u(x)| is less than k ( k I R + ) or...

Integral operators and weighted amalgams

C. Carton-Lebrun, H. Heinig, S. Hofmann (1994)

Studia Mathematica

For large classes of indices, we characterize the weights u, v for which the Hardy operator is bounded from q ̅ ( L v p ̅ ) into q ( L u p ) . For more general operators of Hardy type, norm inequalities are proved which extend to weighted amalgams known estimates in weighted L p -spaces. Amalgams of the form q ( L w p ) , 1 < p,q < ∞ , q ≠ p, w A p , are also considered and sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator and local maximal operator in these spaces are obtained.

Integral polynomials on Banach spaces not containing 1

Raffaella Cilia, Joaquín M. Gutiérrez (2010)

Czechoslovak Mathematical Journal

We give new characterizations of Banach spaces not containing 1 in terms of integral and p -dominated polynomials, extending to the polynomial setting a result of Cardassi and more recent results of Rosenthal.

Currently displaying 161 – 180 of 437