The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
338
We show that the following well-known open problems on existence of Lipschitz isomorphisms between subsets of Hilbert spaces are equivalent: Are balls isomorphic to spheres? Is the whole space isomorphic to the half space?
* Supported by NSERC (Canada)Let X be a Banach space equipped with norm || · ||. We say that || · || is Gâteaux
differentiable at x if for every h ∈ SX(|| · ||),
(∗) lim t→0 (||x + th|| − ||x||) / t exists.
We say that the norm || · || is Gâteaux differentiable if || · || is Gâteaux differentiable
at all x ∈ SX(|| · ||).
We prove the following quasi-dichotomy involving the Banach spaces C(α,X) of all X-valued continuous functions defined on the interval [0,α] of ordinals and endowed with the supremum norm.
Suppose that X and Y are arbitrary Banach spaces of finite cotype. Then at least one of the following statements is true.
(1) There exists a finite ordinal n such that either C(n,X) contains a copy of Y, or C(n,Y) contains a copy of X.
(2) For any infinite countable...
A proof of a necessary and sufficient condition for a sequence to be a multiplier of the normalized Haar basis of L¹[0,1] is given. This proof depends only on the most elementary properties of this system and is an alternative proof to that recently found by Semenov & Uksusov (2012). Additionally, representations are given, which use stochastic processes, of this multiplier norm and of related multiplier norms.
The proof that H¹(δ) and H¹(δ²) are not isomorphic is simplified. This is done by giving a new and simple proof to a martingale inequality of J. Bourgain.
We prove a theorem that generalizes in a way both Michael's Selection Theorem and Dugundji's Simultaneous Extension Theorem. We use it to prove that if K is an uncountable compact metric space and X a Banach space, then C(K,X) is isomorphic to C(𝓒,X) where 𝓒 denotes the Cantor set. For X = ℝ, this gives the well known Milyutin Theorem.
Using the method of forcing we prove that consistently there is a Banach space (of continuous functions on a totally disconnected compact Hausdorff space) of density κ bigger than the continuum where all operators are multiplications by a continuous function plus a weakly compact operator and which has no infinite-dimensional complemented subspaces of density continuum or smaller. In particular no separable infinite-dimensional subspace has a complemented superspace of density continuum or smaller,...
It is proved that the class of separable Rosenthal compacta on the Cantor set having a uniformly bounded dense sequence of continuous functions is strongly bounded.
We discuss a strong version of the Dunford-Pettis property, earlier named (DP*) property, which is shared by both ℓ₁ and . It is equivalent to the Dunford-Pettis property plus the fact that every quotient map onto c₀ is completely continuous. Other weak sequential continuity results on polynomials and analytic mappings related to the (DP*) property are shown.
We describe how the Szlenk index has been used in various areas of the geometry of Banach spaces. We cover the following domains of application of this notion: non existence of universal spaces, linear classification of C(K) spaces, descriptive set theory, renorming problems and non linear classification of Banach spaces.
We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.
Dunford-Pettis type properties are studied in individual Banach spaces as well as in spaces of operators. Bibasic sequences are used to characterize Banach spaces which fail to have the Dunford-Pettis property. The question of whether a space of operators has a Dunford-Pettis property when the dual of the domain and the codomain have the respective property is studied. The notion of an almost weakly compact operator plays a consistent and important role in this study.
Every separable infinite-dimensional superreflexive Banach space admits an equivalent norm which is Fréchet differentiable only on an Aronszajn null set.
We create a new family of Banach spaces, the James-Schreier spaces, by amalgamating two important classical Banach spaces: James' quasi-reflexive Banach space on the one hand and Schreier's Banach space giving a counterexample to the Banach-Saks property on the other. We then investigate the properties of these James-Schreier spaces, paying particular attention to how key properties of their 'ancestors' (that is, the James space and the Schreier space) are expressed in them. Our main results include...
Currently displaying 21 –
40 of
338