The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that superreflexivity can be characterized in terms of bilipschitz embeddability of word hyperbolic groups.We compare characterizations of superrefiexivity in terms of diamond graphs and binary trees.We show that there exist sequences of series-parallel graphs of increasing topological complexitywhich admit uniformly bilipschitz embeddings into a Hilbert space, and thus do not characterize superrefiexivity.
In 1972, the late B. E. Johnson introduced the notion of an amenable Banach algebra and asked whether the Banach algebra ℬ(E) of all bounded linear operators on a Banach space E could ever be amenable if dim E = ∞. Somewhat surprisingly, this question was answered positively only very recently as a by-product of the Argyros-Haydon result that solves the “scalar plus compact problem”: there is an infinite-dimensional Banach space E, the dual of which is ℓ¹, such that . Still, ℬ(ℓ²) is not amenable,...
In [K-S 1] it was shown that is equivalent to an Orlicz norm whose Orlicz function is 2-concave. Here we give a formula for the sequence so that the above expression is equivalent to a given Orlicz norm.
We compare various constructions of random proportional quotients of (i.e., with the dimension of the quotient roughly equal to a fixed proportion of m as m → ∞) and show that several of those constructions are equivalent. As a consequence of our approach we conclude that the most natural “geometric” models possess a number of asymptotically extremal properties, some of which were hitherto not known for any model.
How can one recognize when a metric space is bilipschitz equivalent to an Euclidean space? One should not take the abstraction of metric spaces too seriously here; subsets of Rn are already quite interesting. It is easy to generate geometric conditions which are necessary for bilipschitz equivalence, but it is not clear that such conditions should ever be sufficient. The main point of this paper is that the optimistic conjectures about the existence of bilipschitz parametrizations are wrong. In...
We study the complexity of Banach space valued integration in the randomized setting. We are concerned with r times continuously differentiable functions on the d-dimensional unit cube Q, with values in a Banach space X, and investigate the relation of the optimal convergence rate to the geometry of X. It turns out that the nth minimal errors are bounded by if and only if X is of equal norm type p.
We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set 𝓐, in the Effros-Borel space of subspaces of C[0,1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y, with a Schauder basis, that contains isomorphic copies of every space X in the class 𝓐.
Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies
,
where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and and are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by , we show that
for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special case for...
The concepts of Riesz type and cotype of a given Banach space are extended to a non-commutative setting. First, the Banach space is replaced by an operator space. The notion of quantized orthonormal system, which plays the role of an orthonormal system in the classical setting, is then defined. The Fourier type and cotype of an operator space with respect to a non-commutative compact group fit in this context. Also, the quantized analogs of Rademacher and Gaussian systems are treated. All this is...
We show that, given an n-dimensional normed space X, a sequence of independent random vectors , uniformly distributed in the unit ball of X*, with high probability forms an ε-net for this unit ball. Thus the random linear map defined by embeds X in with at most 1 + ε norm distortion. In the case X = ℓ₂ⁿ we obtain a random 1+ε-embedding into with asymptotically best possible relation between N, n, and ε.
We present a general result on regularization of an arbitrary convex body (and more generally a star body), which gives and extends global forms of a number of well known local facts, like the low M*-estimates, large Euclidean sections of finite volume-ratio spaces and others.
We provide for every 2 ≤ k ≤ n an n-dimensional Banach space E with a unique distance ellipsoid such that there are precisely k linearly independent contact points between and . The corresponding result holds for spaces with non-unique distance ellipsoids as well. We construct n-dimensional Banach spaces E such that one distance ellipsoid has precisely k linearly independent contact points and all other distance ellipsoids have less than k-1 such points.
In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an -space, then it is either an -space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non-commutative -spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which can be considered...
We define the ε-product of an εb-space by quotient bornological spaces and we show that if G is a Schwartz εb-space and E|F is a quotient bornological space, then their εc-product Gεc(E|F) defined in [2] is isomorphic to the quotient bornological space (GεE)|(GεF).
We show that n-dimensional spaces with maximal projection constants exist not only as subspaces of but also as subspaces of l₁. They are characterized by a rigid set of vector conditions. Nevertheless, we show that, in general, there are many non-isometric spaces with maximal projection constants. Several examples are discussed in detail.
Currently displaying 41 –
60 of
79