The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 14 of 14

Showing per page

Mapping Properties of c 0

Paul Lewis (1999)

Colloquium Mathematicae

Bessaga and Pełczyński showed that if c 0 embeds in the dual X * of a Banach space X, then 1 embeds as a complemented subspace of X. Pełczyński proved that every infinite-dimensional closed linear subspace of 1 contains a copy of 1 that is complemented in 1 . Later, Kadec and Pełczyński proved that every non-reflexive closed linear subspace of L 1 [ 0 , 1 ] contains a copy of 1 that is complemented in L 1 [ 0 , 1 ] . In this note a traditional sliding hump argument is used to establish a simple mapping property of c 0 which simultaneously...

Matrix subspaces of L₁

Gideon Schechtman (2013)

Studia Mathematica

If E = e i and F = f i are two 1-unconditional basic sequences in L₁ with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices a i , j with norm | | a i , j | | E ( F ) = | | k | | l a k , l f l | | e k | | embeds into L₁. This generalizes a recent result of Prochno and Schütt.

Minimal multi-convex projections

Grzegorz Lewicki, Michael Prophet (2007)

Studia Mathematica

We say that a function from X = C L [ 0 , 1 ] is k-convex (for k ≤ L) if its kth derivative is nonnegative. Let P denote a projection from X onto V = Πₙ ⊂ X, where Πₙ denotes the space of algebraic polynomials of degree less than or equal to n. If we want P to leave invariant the cone of k-convex functions (k ≤ n), we find that such a demand is impossible to fulfill for nearly every k. Indeed, only for k = n-1 and k = n does such a projection exist. So let us consider instead a more general “shape” to preserve....

Modifications of the double arrow space and related Banach spaces C(K)

Witold Marciszewski (2008)

Studia Mathematica

We consider the class of compact spaces K A which are modifications of the well known double arrow space. The space K A is obtained from a closed subset K of the unit interval [0,1] by “splitting” points from a subset A ⊂ K. The class of all such spaces coincides with the class of separable linearly ordered compact spaces. We prove some results on the topological classification of K A spaces and on the isomorphic classification of the Banach spaces C ( K A ) .

Multilinear operators on C ( K , X ) spaces

Ignacio Villanueva (2004)

Czechoslovak Mathematical Journal

Given Banach spaces  X , Y and a compact Hausdorff space  K , we use polymeasures to give necessary conditions for a multilinear operator from C ( K , X ) into  Y to be completely continuous (resp.  unconditionally converging). We deduce necessary and sufficient conditions for  X to have the Schur property (resp.  to contain no copy of  c 0 ), and for  K to be scattered. This extends results concerning linear operators.

Multiple summing operators on l p spaces

Dumitru Popa (2014)

Studia Mathematica

We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of l p spaces. This characterization is used to show that multiple s-summing operators on a product of l p spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators T : l 4 / 3 × l 4 / 3 l such that none of the associated linear operators is s-summing...

Multiplication operators on L ( L p ) and p -strictly singular operators

William Johnson, Gideon Schechtman (2008)

Journal of the European Mathematical Society

A classification of weakly compact multiplication operators on L ( L p ) , 1<p< , i s g i v e n . T h i s a n s w e r s a q u e s t i o n r a i s e d b y S a k s m a n a n d T y l l i i n 1992 . T h e c l a s s i f i c a t i o n i n v o l v e s t h e c o n c e p t o f p - s t r i c t l y s i n g u l a r o p e r a t o r s , a n d w e a l s o i n v e s t i g a t e t h e s t r u c t u r e o f g e n e r a l p - s t r i c t l y s i n g u l a r o p e r a t o r s o n Lp . T h e m a i n r e s u l t i s t h a t i f a n o p e r a t o r T o n Lp , 1<p<2 , i s p - s t r i c t l y s i n g u l a r a n d T|X i s a n i s o m o r p h i s m f o r s o m e s u b s p a c e X o f Lp , t h e n X e m b e d s i n t o Lr f o r a l l r<2 , b u t X n e e d n o t b e i s o m o r p h i c t o a H i l b e r t s p a c e . It is also shown that if T is convolution by a biased coin on L p of the Cantor group, 1 p < 2 , and T | X is an isomorphism for some reflexive subspace X of L p , then X is isomorphic to a Hilbert space. The case p = 1 answers a question asked by Rosenthal in 1976.

Multiplying balls in the space of continuous functions on [0,1]

Marek Balcerzak, Artur Wachowicz, Władysław Wilczyński (2005)

Studia Mathematica

Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ +, min, max then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ +,·,min,max, then the set Φ - 1 ( E ) is residual whenever E is residual in...

Currently displaying 1 – 14 of 14

Page 1