The search session has expired. Please query the service again.
We give new characterizations of Banach spaces not containing in terms of integral and -dominated polynomials, extending to the polynomial setting a result of Cardassi and more recent results of Rosenthal.
We study conditions on an infinite dimensional separable Banach space implying that is the only non-trivial invariant subspace of under the action of the algebra of biconjugates of bounded operators on : . Such a space is called simple. We characterize simple spaces among spaces which contain an isomorphic copy of , and show in particular that any space which does not contain and has property (u) of Pelczynski is simple.
Let and be a Banach space and a real Banach lattice, respectively, and let denote an infinite set. We give concise proofs of the following results: (1) The dual space contains an isometric copy of iff contains an isometric copy of , and (2) contains a lattice-isometric copy of iff contains a lattice-isometric copy of .
We introduce the definition of -limited completely continuous operators, . The question of whether a space of operators has the property that every -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using -limited completely continuous evaluation operators.
It is shown that the weak spaces , and are isomorphic as Banach spaces.
Currently displaying 1 –
7 of
7