Operadores débilmente compactos e incondicionalmente convergentes en espacios de funciones continuas con valores vectoriales.
For any uniformly closed subalgebra A of C(K) for a compact Hausdorff space K without isolated points and , we show that every complete norm on A which makes continuous the multiplication by is equivalent to provided that has no interior points whenever λ lies in ℂ. Actually, these assertions are equivalent if A = C(K).
The classical theorems of Banach and Stone (1932, 1937), Gelfand and Kolmogorov (1939) and Kaplansky (1947) show that a compact Hausdorff space X is uniquely determined by the linear isometric structure, the algebraic structure, and the lattice structure, respectively, of the space C(X). In this paper, it is shown that for rather general subspaces A(X) and A(Y) of C(X) and C(Y), respectively, any linear bijection T: A(X) → A(Y) such that f ≥ 0 if and only if Tf ≥ 0 gives rise to a homeomorphism...
Let ω denote the set of natural numbers. We prove: for every mod-finite ascending chain of infinite subsets of ω, there exists , an infinite maximal almost disjoint family (MADF) of infinite subsets of the natural numbers, such that the Stone-Čech remainder βψ∖ψ of the associated ψ-space, ψ = ψ(ω,ℳ ), is homeomorphic to λ + 1 with the order topology. We also prove that for every λ < ⁺, where is the tower number, there exists a mod-finite ascending chain , hence a ψ-space with Stone-Čech remainder...
We continue our study of outer elements of the noncommutative spaces associated with Arveson’s subdiagonal algebras. We extend our generalized inner-outer factorization theorem, and our characterization of outer elements, to include the case of elements with zero determinant. In addition, we make several further contributions to the theory of outers. For example, we generalize the classical fact that outers in actually satisfy the stronger condition that there exist aₙ ∈ A with haₙ ∈ Ball(A)...
We obtain, in terms of associated weights, natural criteria for compact embedding of weighted Banach spaces of holomorphic functions on a wide class of domains in the complex plane. Our study is based on a complete characterization of finite-dimensional weighted spaces and canonical weights for them. In particular, we show that for a domain whose complement is not a Painlevé null set each nontrivial space of holomorphic functions with O-growth condition is infinite-dimensional.
We study the Gromov-Hausdorff and Kadets distances between C(K)-spaces and their quotients. We prove that if the Gromov-Hausdorff distance between C(K) and C(L) is less than 1/16 then K and L are homeomorphic. If the Kadets distance is less than one, and K and L are metrizable, then C(K) and C(L) are linearly isomorphic. For K and L countable, if C(L) has a subquotient which is close enough to C(K) in the Gromov-Hausdorff sense then K is homeomorphic to a clopen subset of L.
In this note we exhibit points of weak*-norm continuity in the dual unit ball of the injective tensor product of two Banach spaces when one of them is a G-space.
For a wide class of weights we find the approximative point spectrum and the essential spectrum of the pointwise multiplication operator , , on the weighted Banach spaces of analytic functions on the disc with the sup-norm. Thus we characterize when is Fredholm or is an into isomorphism. We also study cyclic phenomena for the adjoint map .
In this paper we shall compare three notions of pointwise smoothness: the usual definition, J.M. Bony's two-microlocal spaces Cx0s,s', and the corresponding definition on the wavelet coefficients. The purpose is mainly to show that these two-microlocal spaces provide "good substitutes" for the pointwise Hölder regularity condition; they can be very precisely compared with this condition, they have more functional properties, and can be characterized by conditions on the wavelet coefficients. We...
Using partial derivatives and , we introduce Besov spaces of polyanalytic functions in the open unit disk, as well as in the upper half-plane. We then prove that the dilatations of functions in certain weighted polyanalytic Besov spaces converge to the same functions in norm. When restricted to the open unit disk, we prove that each polyanalytic function of degree can be approximated in norm by polyanalytic polynomials of degree at most .