On the density of continuous functions in variable exponent Sobolev space.
Motivated by recent developments on calculus in metric measure spaces , we prove a general duality principle between Fuglede’s notion [15] of -modulus for families of finite Borel measures in and probability measures with barycenter in , with dual exponent of . We apply this general duality principle to study null sets for families of parametric and non-parametric curves in . In the final part of the paper we provide a new proof, independent of optimal transportation, of the equivalence...
We show that the functions in L2(Rn) given by the sum of infinitely sparse wavelet expansions are regular, i.e. belong to C∞L2 (x0), for all x0 ∈ Rn which is outside of a set of vanishing Hausdorff dimension.
Si dimostra che il funzionale è semicontinuo inferiormente su , rispetto alla topologia indotta da , qualora l’integrando sia una funzione non-negativa, misurabile in , convessa in , limitata nell’intorno dei punti del tipo , e tale che la funzione sia semicontinua inferiormente su .