The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We obtain interpolation inequalities for derivatives:
,
and their counterparts expressed in Orlicz norms:
||∇f||²(q,α) ≤ C||Φ₁(x,|f|,|∇(2)f|)||(p,β) ||Φ₂(x,|f|,|∇(2)f|)||(r,γ)where is the Orlicz norm relative to the function . The parameters p,q,r,α,β,γ and the Carathéodory functions Φ₁,Φ₂ are supposed to satisfy certain consistency conditions. Some of the classical Gagliardo-Nirenberg inequalities follow as a special case. Gagliardo-Nirenberg inequalities in logarithmic spaces with higher...
We derive inequalities of Gagliardo-Nirenberg type in weighted Orlicz spaces on ℝⁿ, for maximal functions of derivatives and for the derivatives themselves. This is done by an application of pointwise interpolation inequalities obtained previously by the first author and of Muckenhoupt-Bloom-Kerman-type theorems for maximal functions.
We prove asymptotic formulas for the behavior of Gelfand and Kolmogorov numbers of Sobolev embeddings between Besov and Triebel-Lizorkin spaces of radial distributions. Our method works also for Weyl numbers.
In this paper we study generalized Besov type spaces on the Laguerre hypergroup and we give some characterizations using different equivalent norms which allows to reach results of completeness, continuous embeddings and density of some subspaces. A generalized Calderón-Zygmund formula adapted to the harmonic analysis on the Laguerre Hypergroup is obtained inducing two more equivalent norms.
We introduce the generalized fractional integrals and prove the strong and weak boundedness of on the central Morrey spaces . In order to show the boundedness, the generalized λ-central mean oscillation spaces and the generalized weak λ-central mean oscillation spaces play an important role.
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point in a metric measure space is called a generalized Lebesgue point of a measurable function if the medians of over the balls converge to when converges to . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show...
Let , , be a bounded connected domain of the class for some . Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem
where is a Young function such that the space is embedded into exponential or multiple exponential Orlicz space, the nonlinearity has the corresponding critical growth, is a continuous potential,...
Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem
where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω =...
2000 Mathematics Subject Classification: 35E45In this paper we study generalized Sobolev spaces H^sG of exponential
type associated with the Dunkl operators based on the space G of test
functions for generalized hyperfunctions and investigate their properties.
Moreover, we introduce a class of symbols of exponential type and their
associated pseudodifferential operators related to the Dunkl operators, which
act naturally on H^sG.
Pointwise gradient bounds via Riesz potentials like those available for the Poisson equation actually hold for general quasilinear equations.
Currently displaying 1 –
20 of
20