The search session has expired. Please query the service again.
In this paper we deal with the energy functionals for the elastic thin film ω ⊂ ℝ² involving the bending moments. The effective energy functional is obtained by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and...
In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type...
In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class for all and, as a consequence, the Hölder regularity of the solution . is an elliptic second order operator with discontinuous coefficients and the lower order terms belong to suitable Lebesgue spaces.
We study a system of pseudodifferential equations which is elliptic in the Petrovskii sense on a closed smooth manifold. We prove that the operator generated by the system is a Fredholm operator in a refined two-sided scale of Hilbert function spaces. Elements of this scale are special isotropic spaces of Hörmander-Volevich-Paneah.
The paper deals with embeddings of function spaces of variable order of differentiation in function spaces of variable order of integration. Here the function spaces of variable order of differentiation are defined by means of pseudodifferential operators.
Anisotropic Lipschitz spaces are considered. For these spaces we obtain sharp embeddings in Besov and Lorentz spaces. The methods used are based on estimates of iterative rearrangements. We find a unified approach that arises from the estimation of functions defined as minimum of a given system of functions. The case of L¹-norm is also covered.
We prove norm inequalities between Lorentz and Besov-Lipschitz spaces of fractional smoothness.
Currently displaying 1 –
20 of
79