The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2481 – 2500 of 11160

Showing per page

Decompositions and asymptotic limit for bicontractions

Marek Kosiek, Laurian Suciu (2012)

Annales Polonici Mathematici

The asymptotic limit of a bicontraction T (that is, a pair of commuting contractions) on a Hilbert space is used to describe a Nagy-Foiaş-Langer type decomposition of T. This decomposition is refined in the case when the asymptotic limit of T is an orthogonal projection. The case of a bicontraction T consisting of hyponormal (even quasinormal) contractions is also considered, where we have S T * = S ² T * .

Decompositions for real Banach spaces with small spaces of operators

Manuel González, José M. Herrera (2007)

Studia Mathematica

We consider real Banach spaces X for which the quotient algebra (X)/ℐn(X) is finite-dimensional, where ℐn(X) stands for the ideal of inessential operators on X. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces X i for which ( X i ) / n ( X i ) is isomorphic as a real algebra to either the real numbers ℝ, the complex numbers ℂ, or the quaternion numbers ℍ. Moreover, the set of subspaces X i can be divided into subsets in such a way that if X i and X j are in different subsets,...

Decompositions of Beurling type for E₀-semigroups

Rolf Gohm (2006)

Banach Center Publications

We define tensor product decompositions of E₀-semigroups with a structure analogous to a classical theorem of Beurling. Such decompositions can be characterized by adaptedness and exactness of unitary cocycles. For CCR-flows we show that such cocycles are convergent.

Deformation quantization and Borel's theorem in locally convex spaces

Miroslav Engliš, Jari Taskinen (2007)

Studia Mathematica

It is well known that one can often construct a star-product by expanding the product of two Toeplitz operators asymptotically into a series of other Toeplitz operators multiplied by increasing powers of the Planck constant h. This is the Berezin-Toeplitz quantization. We show that one can obtain in a similar way in fact any star-product which is equivalent to the Berezin-Toeplitz star-product, by using instead of Toeplitz operators other suitable mappings from compactly supported smooth functions...

Degenerate evolution problems and Beta-type operators

Antonio Attalienti, Michele Campiti (2000)

Studia Mathematica

The present paper is concerned with the study of the differential operator Au(x):=α(x)u”(x)+β(x)u’(x) in the space C([0,1)] and of its adjoint Bv(x):=((αv)’(x)-β(x)v(x))’ in the space L 1 ( 0 , 1 ) , where α(x):=x(1-x)/2 (0≤x≤1). A careful analysis of their main properties is carried out in view of some generation results available in [6, 12, 20] and [25]. In addition, we introduce and study two different kinds of Beta-type operators as a generalization of similar operators defined in [18]. Among the corresponding...

Degree of T-equivariant maps in ℝⁿ

Joanna Janczewska, Marcin Styborski (2007)

Banach Center Publications

A special case of G-equivariant degree is defined, where G = ℤ₂, and the action is determined by an involution T : p q p q given by T(u,v) = (u,-v). The presented construction is self-contained. It is also shown that two T-equivariant gradient maps f , g : ( , S n - 1 ) ( , 0 ) are T-homotopic iff they are gradient T-homotopic. This is an equivariant generalization of the result due to Parusiński.

Degree theory for VMO maps on metric spaces

Francesco Uguzzoni, Ermanno Lanconelli (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We construct a degree theory for Vanishing Mean Oscillation functions in metric spaces, following some ideas of Brezis & Nirenberg. The underlying sets of our metric spaces are bounded open subsets of N and their boundaries. Then, we apply our results in order to analyze the surjectivity properties of the L -harmonic extensions of VMO vector-valued functions. The operators L we are dealing with are second order linear differential operators sum of squares of vector fields satisfying the hypoellipticity...

Currently displaying 2481 – 2500 of 11160