Displaying 261 – 280 of 374

Showing per page

Fourier multipliers for Hölder continuous functions and maximal regularity

Wolfgang Arendt, Charles Batty, Shangquan Bu (2004)

Studia Mathematica

Two operator-valued Fourier multiplier theorems for Hölder spaces are proved, one periodic, the other on the line. In contrast to the L p -situation they hold for arbitrary Banach spaces. As a consequence, maximal regularity in the sense of Hölder can be characterized by simple resolvent estimates of the underlying operator.

Fourier-like methods for equations with separable variables

Danuta Przeworska-Rolewicz (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

It is well known that a power of a right invertible operator is again right invertible, as well as a polynomial in a right invertible operator under appropriate assumptions. However, a linear combination of right invertible operators (in particular, their sum and/or difference) in general is not right invertible. It will be shown how to solve equations with linear combinations of right invertible operators in commutative algebras using properties of logarithmic and antilogarithmic mappings. The...

Fourier-Wigner transforms and Liouville's theorems for the sub-Laplacian on the Heisenberg group

Aparajita Dasgupta, M. W. Wong (2010)

Banach Center Publications

The sub-Laplacian on the Heisenberg group is first decomposed into twisted Laplacians parametrized by Planck's constant. Using Fourier-Wigner transforms so parametrized, we prove that the twisted Laplacians are globally hypoelliptic in the setting of tempered distributions. This result on global hypoellipticity is then used to obtain Liouville's theorems for harmonic functions for the sub-Laplacian on the Heisenberg group.

Fractional BVPs with strong time singularities and the limit properties of their solutions

Svatoslav Staněk (2014)

Open Mathematics

In the first part, we investigate the singular BVP d d t c D α u + ( a / t ) c D α u = u , u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems d d t c D α n u + ( a / t ) c D α n u = f ( t , u , c D β n u ) , u(0) = A, u(1) = B, c D α n u ( t ) t = 0 = 0 where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying...

Fractional Derivatives and Fractional Powers as Tools in Understanding Wentzell Boundary Value Problems for Pseudo-Differential Operators Generating Markov Processes

Jacob, N., Knopova, V. (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 31C25, 35S99, 47D07.Wentzell boundary value problem for pseudo-differential operators generating Markov processes but not satisfying the transmission condition are not well understood. Studying fractional derivatives and fractional powers of such operators gives some insights in this problem. Since an L^p – theory for such operators will provide a helpful tool we investigate the L^p –domains of certain model operators.* This work is partially supported...

Fractional integro-differential inclusions with state-dependent delay

Khalida Aissani, Mouffak Benchohra, Khalil Ezzinbi (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we establish sufficient conditions for the existence of mild solutions for fractional integro-differential inclusions with state-dependent delay. The techniques rely on fractional calculus, multivalued mapping on a bounded set and Bohnenblust-Karlin's fixed point theorem. Finally, we present an example to illustrate the theory.

Fractional iteration in the disk algebra: prime ends and composition operators.

Manuel D. Contreras, Santiago Díaz-Madrigal (2005)

Revista Matemática Iberoamericana

In this paper we characterize the semigroups of analytic functions in the unit disk which lead to semigroups of operators in the disk algebra. These characterizations involve analytic as well as geometric aspects of the iterates and they are strongly related to the classical theorem of Carathéodory about local connection and boundary behaviour of univalent functions.

Fractional Laplacian with singular drift

Tomasz Jakubowski (2011)

Studia Mathematica

For α ∈ (1,2) we consider the equation t u = Δ α / 2 u + b · u , where b is a time-independent, divergence-free singular vector field of the Morrey class M 1 - α . We show that if the Morrey norm | | b | | M 1 - α is sufficiently small, then the fundamental solution is globally in time comparable with the density of the isotropic stable process.

Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces

Ali Akbulut, Amil Hasanov (2016)

Open Mathematics

In this paper, we study the boundedness of fractional multilinear integral operators with rough kernels [...] TΩ,αA1,A2,…,Ak, T Ω , α A 1 , A 2 , ... , A k , which is a generalization of the higher-order commutator of the rough fractional integral on the generalized weighted Morrey spaces Mp,ϕ (w). We find the sufficient conditions on the pair (ϕ1, ϕ2) with w ∈ Ap,q which ensures the boundedness of the operators [...] TΩ,αA1,A2,…,Ak, T Ω , α A 1 , A 2 , ... , A k , from [...] Mp,φ1wptoMp,φ2wq M p , ϕ 1 w p to M p , ϕ 2 w q for 1 < p < q < ∞. In all cases the conditions for...

Fractional Powers of Almost Non-Negative Operators

Martínez, Celso, Sanz, Miguel, Redondo, Antonia (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: Primary 47A60, 47D06.In this paper, we extend the theory of complex powers of operators to a class of operators in Banach spaces whose spectrum lies in C ]−∞, 0[ and whose resolvent satisfies an estimate ||(λ + A)(−1)|| ≤ (λ(−1) + λm) M for all λ > 0 and for some constants M > 0 and m ∈ R. This class of operators strictly contains the class of the non negative operators and the one of operators with polynomially bounded resolvent. We also prove that this theory...

Currently displaying 261 – 280 of 374