The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 281 –
300 of
311
We present an integral equation method for solving boundary value
problems of the Helmholtz equation in unbounded domains. The
method relies on the factorisation of one of the
Calderón projectors by an operator approximating the exterior
admittance (Dirichlet to Neumann) operator of the scattering
obstacle. We show how the pseudo-differential calculus allows us
to construct such approximations and that this yields integral
equations without internal resonances and being well-conditioned
at all...
We prove that on , there is no n-supercyclic operator with 1 ≤ n < ⌊(N + 1)/2⌋, i.e. if has an n-dimensional subspace whose orbit under is dense in , then n is greater than ⌊(N + 1)/2⌋. Moreover, this value is optimal. We then consider the case of strongly n-supercyclic operators. An operator is strongly n-supercyclic if has an n-dimensional subspace whose orbit under T is dense in , the nth Grassmannian. We prove that strong n-supercyclicity does not occur non-trivially in finite...
We show that there are linear operators on Hilbert space that have n-dimensional subspaces with dense orbit, but no (n-1)-dimensional subspaces with dense orbit. This leads to a new class of operators, called the n-supercyclic operators. We show that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an n-supercyclic operator, there are n circles centered at the origin such that every component of the spectrum must intersect one of these circles.
We give an elementary proof of the fact that given two polynomials P, Q without common zeros and a linear operator A, the operators P(A) and Q(A) verify some properties equivalent to the pair (P(A),Q(A)) being non-singular in the sense of J.L. Taylor. From these properties we derive expressions for the range and null space of P(A) and spectral mapping theorems for polynomials fo continuous (or closed) operators in Banach spaces.
In this paper, some ideas for the numerical realization of the hybrid proximal projection algorithm from Solodov and Svaiter [22] are presented. An example is given which shows that this hybrid algorithm does not generate a Fejér-monotone sequence. Further, a strategy is suggested for the computation of inexact solutions of the auxiliary problems with a certain tolerance. For that purpose, ε-subdifferentials of the auxiliary functions and the bundle trust region method from Schramm and Zowe [20]...
We show that the numerical index of a -, -, or -sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.
We introduce new concepts of numerical range and numerical radius of one operator with respect to another one, which generalize in a natural way the known concepts of numerical range and numerical radius. We study basic properties of these new concepts and present some examples.
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
In this article, we show the convergence of a class of numerical schemes for certain
maximal monotone evolution systems; a by-product of this results
is the existence of solutions in cases which had not been previously
treated. The order of these schemes is 1/2 in general and 1
when the only non Lipschitz continuous term is the subdifferential
of the indicatrix of a closed convex set. In the case of Prandtl's
rheological model, our estimates in maximum norm do not depend
on spatial dimension.
...
Currently displaying 281 –
300 of
311