Existence and uniqueness of mild solutions of second order Volterra integrodifferential equations with nonlocal conditions.
We use the coincidence degree to establish new results on the existence and uniqueness of T-periodic solutions for a kind of Duffing equation with two deviating arguments of the form x'' + Cx'(t) + g₁(t,x(t-τ₁(t))) + g₂(t,x(t-τ₂(t))) = p(t).
This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple considered in the setting of this paper is such that the embedding is only continuous.