Fredholm alternative for nonlinear operators and applications to partial differential equations and integral equations
The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.
We develop a difference equations analogue of recent results by F. Gesztesy, K. A. Makarov, and the second author relating the Evans function and Fredholm determinants of operators with semi-separable kernels.
Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let be the non-essential spectrum of T. We show that, for each connected component M of the manifold of all smooth points of , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups grow at least like the sequence with d = dim M.