The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 3681 – 3700 of 11160

Showing per page

Fully representable and *-semisimple topological partial *-algebras

J.-P. Antoine, G. Bellomonte, C. Trapani (2012)

Studia Mathematica

We continue our study of topological partial *-algebras, focusing our attention on *-semisimple partial *-algebras, that is, those that possess a multiplication core and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals, and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the aim of characterizing a *-semisimple partial...

Fully summing mappings between Banach spaces

Mário C. Matos, Daniel M. Pellegrino (2007)

Studia Mathematica

We introduce and investigate the non-n-linear concept of fully summing mappings; if n = 1 this concept coincides with the notion of nonlinear absolutely summing mappings and in this sense this article unifies these two theories. We also introduce a non-n-linear definition of Hilbert-Schmidt mappings and sketch connections between this concept and fully summing mappings.

Function theory in sectors

Brian Jefferies (2004)

Studia Mathematica

It is shown that there is a one-to-one correspondence between uniformly bounded holomorphic functions of n complex variables in sectors of ℂⁿ, and uniformly bounded functions of n+1 real variables in sectors of n + 1 that are monogenic functions in the sense of Clifford analysis. The result is applied to the construction of functional calculi for n commuting operators, including the example of differentiation operators on a Lipschitz surface in n + 1 .

Functional calculi, regularized semigroups and integrated semigroups

Ralph deLaubenfels, Mustapha Jazar (1999)

Studia Mathematica

We characterize closed linear operators A, on a Banach space, for which the corresponding abstract Cauchy problem has a unique polynomially bounded solution for all initial data in the domain of A n , for some nonnegative integer n, in terms of functional calculi, regularized semigroups, integrated semigroups and the growth of the resolvent in the right half-plane. We construct a semigroup analogue of a spectral distribution for such operators, and an extended functional calculus: When the abstract...

Functional calculus for a class of unbounded linear operators on some non-archimedean Banach spaces

Dodzi Attimu, Toka Diagana (2009)

Commentationes Mathematicae Universitatis Carolinae

This paper is mainly concerned with extensions of the so-called Vishik functional calculus for analytic bounded linear operators to a class of unbounded linear operators on c 0 . For that, our first task consists of introducing a new class of linear operators denoted W ( c 0 ( J , ω , 𝕂 ) ) and next we make extensive use of such a new class along with the concept of convergence in the sense of resolvents to construct a functional calculus for a large class of unbounded linear operators.

Currently displaying 3681 – 3700 of 11160