Matrices of operators and regularized semigroups.
We derive the limiting matrix kernels for the Gaussian orthogonal and symplectic ensembles scaled at the edge, with proofs of convergence in the operator norms that ensure convergence of the determinants.
If Σ = (X,σ) is a topological dynamical system, where X is a compact Hausdorff space and σ is a homeomorphism of X, then a crossed product Banach *-algebra ℓ¹(Σ) is naturally associated with these data. If X consists of one point, then ℓ¹(Σ) is the group algebra of the integers. The commutant C(X)₁' of C(X) in ℓ¹(Σ) is known to be a maximal abelian subalgebra which has non-zero intersection with each non-zero closed ideal, and the same holds for the commutant C(X)'⁎ of C(X) in C*(Σ), the enveloping...
We show various estimates for Schrödinger operators on and their square roots. We assume reverse Hölder estimates on the potential, and improve some results of Shen. Our main tools are improved Fefferman-Phong inequalities and reverse Hölder estimates for weak solutions of and their gradients.