Displaying 5121 – 5140 of 11160

Showing per page

Narrow operators and rich subspaces of Banach spaces with the Daugavet property

Vladimir M. Kadets, Roman V. Shvidkoy, Dirk Werner (2001)

Studia Mathematica

Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).

Narrow operators on lattice-normed spaces

Marat Pliev (2011)

Open Mathematics

The aim of this article is to extend results of Maslyuchenko, Mykhaylyuk and Popov about narrow operators on vector lattices. We give a new definition of a narrow operator, where a vector lattice as the domain space of a narrow operator is replaced with a lattice-normed space. We prove that every GAM-compact (bo)-norm continuous linear operator from a Banach-Kantorovich space V to a Banach lattice Y is narrow. Then we show that, under some mild conditions, a continuous dominated operator is narrow...

Near viability for fully nonlinear differential inclusions

Irina Căpraru, Alina Lazu (2014)

Open Mathematics

We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma and a compactness...

Nearly equivalent operators

Sadoon Ibrahim Othman (1996)

Mathematica Bohemica

The properties of the bounded linear operators T on a Hilbert space which satisfy the condition T T * = U * T * T U where U is unitary, are studied in relation to those of normal, hyponormal, quasinormal and subnormal operators.

Neumann boundary value problems across resonance

Ginés López, Juan-Aurelio Montero-Sánchez (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.

Currently displaying 5121 – 5140 of 11160