Approximation solvability of Hammerstein equation.
This paper is devoted to the study of the approximation problem for the abstract hyperbolic differential equation u'(t) = A(t)u(t) for t ∈ [0,T], where A(t):t ∈ [0,T] is a family of closed linear operators, without assuming the density of their domains.
We show that the critical nonlinear elliptic Neumann problem in , in , on , where is a bounded and smooth domain in , has arbitrarily many solutions, provided that is small enough. More precisely, for any positive integer , there exists such that for , the above problem has a nontrivial solution which blows up at interior points in , as . The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite-dimensional...
Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping and that of , we study various norms for , where is the Toeplitz operator with symbol . In Theorem , given polynomials and we find a symbol such that . We extend some of our results to the polydisc.