Opérateurs transversalement elliptiques et formes différentielles équivariantes
In this paper we consider maps called operational quantities, which assign a non-negative real number to every operator acting between Banach spaces, and we obtain relations between the kernels of these operational quantities and the classes of operators of the Fredholm theory.
Several operational quantities have appeared in the literature characterizing upper semi-Fredholm operators. Here we show that these quantities can be divided into three classes, in such a way that two of them are equivalent if they belong to the same class, and are comparable and not equivalent if they belong to different classes. Moreover, we give a similar classification for operational quantities characterizing lower semi-Fredholm operators.
Several operational quantities, defined in terms of the norm and the class of finite dimensional Banach spaces, have been used to characterize the classes of upper and lower semi-Fredholm operators, strictly singular and strictly cosingular operators, and to derive some perturbation results.In this paper we shall introduce and study some operational quantities derived from the norm and associated to a space ideal. By means of these quantities we construct a generalized Fredholm theory in which...
We introduce and study some operational quantities associated to a space ideal . These quantities are used to define generalized semi-Fredholm operators associated to , and the corresponding perturbation classes which extend the strictly singular and strictly cosingular operators, and we study the generalized Fredholm theory obtained in this way. Finally we present some examples and show that the classes of generalized semi-Fredholm operators are non-trivial for several classical space ideals.
We investigate a notion of relative operator entropy, which develops the theory started by J. I. Fujii and E. Kamei [Math. Japonica 34 (1989), 341-348]. For two finite sequences A = (A₁,...,Aₙ) and B = (B₁,...,Bₙ) of positive operators acting on a Hilbert space, a real number q and an operator monotone function f we extend the concept of entropy by setting , and then give upper and lower bounds for as an extension of an inequality due to T. Furuta [Linear Algebra Appl. 381 (2004), 219-235] under...
We consider the system of operator equations ABA = A² and BAB = B². Let (A,B) be a solution to this system. We give several connections among the operators A, B, AB, and BA. We first prove that A is subscalar of finite order if and only if B is, which is equivalent to the subscalarity of AB or BA with finite order. As a corollary, if A is subscalar and its spectrum has nonempty interior, then B has a nontrivial invariant subspace. We also provide examples of subscalar operator matrices. Moreover,...
Let G be a locally compact group. We use the canonical operator space structure on the spaces for p ∈ [1,∞] introduced by G. Pisier to define operator space analogues of the classical Figà-Talamanca-Herz algebras . If p ∈ (1,∞) is arbitrary, then and the inclusion is a contraction; if p = 2, then OA₂(G) ≅ A(G) as Banach spaces, but not necessarily as operator spaces. We show that is a completely contractive Banach algebra for each p ∈ (1,∞), and that completely contractively for amenable...
The present paper consists of two parts. In Section 1 we consider fractional-linear transformations (f.-l.t. for brevity) F in the space of all linear bounded operators acting from into , where are Banach spaces. We show that in the case of Hilbert spaces the image F(ℬ) of any (open or closed) ball ℬ ⊂ D(F) is convex, and if ℬ is closed, then F(ℬ) is compact in the weak operator topology (w.o.t.) (Theorem 1.2). These results extend the corresponding results on compactness obtained in [3],...
Given a vector measure m with values in a Banach space X, a desirable property (when available) of the associated Banach function space L¹(m) of all m-integrable functions is that L¹(m) = L¹(|m|), where |m| is the [0,∞]-valued variation measure of m. Closely connected to m is its X-valued integration map Iₘ: f ↦ ∫f dm for f ∈ L¹(m). Many traditional operators from analysis arise as integration maps in this way. A detailed study is made of the connection between the property L¹(m) = L¹(|m|) and the...