Displaying 1421 – 1440 of 1576

Showing per page

Opérateurs dissipatifs et semi-groupes dans les espaces de fonctions continues

Jean-Pierre Roth (1976)

Annales de l'institut Fourier

Soit X un espace localement compact. Tout opérateur dissipatif de domaine dense dans C 0 ( ( X ) est limite d’opérateurs dissipatifs bornés. Ce résultat permet, dans le cas où X est un espace homogène, de démontrer que tout opérateur dissipatif, de domaine dense et invariant sur C 0 ( X ) se prolonge en le générateur infinitésimal d’un semi-groupe à contraction invariant sur C 0 ( X ) .À tout opérateur A vérifiant le principe du maximum positif sur C 0 ( X , R ) et de domaine assez riche, on associe un opérateur bilinéaire B , appelé...

Opérateurs hyperboliques à caractéristiques de multiplicité constante

Jacques Chazarain (1974)

Annales de l'institut Fourier

Soit P un opérateur hyperbolique à caractéristiques de multiplicité constante. On sait que le problème de Cauchy est mal posé si on n’impose pas une condition, dite de Lévi, sur les termes d’ordre inférieur. On démontre que cette condition implique la possibilité de construire une paramétrix du problème de Cauchy au moyen des opérateurs intégraux de Fourier. On en déduit la résolubilité du problème de Cauchy dans les fonctions C et dans les espaces de Sobolev.

Opérateurs intégro-différentiels méromorphes et opérateurs aux différences

Anne Duval (1987)

Annales de l'institut Fourier

On introduit une classe d’opérateurs intégro-différentiels d’ordre infini, à coefficients méromorphes et pour lesquels les séries majorantes sont de type Dirichlet. On établit des résultats algébriques : caractérisation des éléments inversibles, théorèmes de division et de préparation. En les faisant opérer sur divers espaces de séries et de fonctions on obtient des théorèmes d’indices et des résultats de surjectivité. Après transformation de Mellin ces opérateurs permettent d’étudier les “solutions”...

Opérateurs pseudo-différentiels analytiques et opérateurs d'ordre infini

Louis Boutet de Monvel (1972)

Annales de l'institut Fourier

Cet article reprend et complète la partie qui concerne les opérateurs pseudo- différentiels analytiques dans un travail fait en collaboration avec P. Krée (Ann. Inst. Fourier, 17-1 (1967), 295-323). En particulier la théorie est généralisée aux opérateurs d’ordre infini.

Opérateurs pseudo-différentiels définis en un point

Ryuichi Ishimura (2006)

Annales Polonici Mathematici

We introduce the notion of pseudo-differential operators defined at a point and we establish a canonical one-to-one correspondence between such an operator and its symbol. We also prove the invertibility theorem for special type operators.

Currently displaying 1421 – 1440 of 1576