Opérateurs différentiels invariants sur un groupe de Lie
Soit un espace localement compact. Tout opérateur dissipatif de domaine dense dans est limite d’opérateurs dissipatifs bornés. Ce résultat permet, dans le cas où est un espace homogène, de démontrer que tout opérateur dissipatif, de domaine dense et invariant sur se prolonge en le générateur infinitésimal d’un semi-groupe à contraction invariant sur .À tout opérateur vérifiant le principe du maximum positif sur et de domaine assez riche, on associe un opérateur bilinéaire , appelé...
Soit un opérateur hyperbolique à caractéristiques de multiplicité constante. On sait que le problème de Cauchy est mal posé si on n’impose pas une condition, dite de Lévi, sur les termes d’ordre inférieur. On démontre que cette condition implique la possibilité de construire une paramétrix du problème de Cauchy au moyen des opérateurs intégraux de Fourier. On en déduit la résolubilité du problème de Cauchy dans les fonctions et dans les espaces de Sobolev.
On introduit une classe d’opérateurs intégro-différentiels d’ordre infini, à coefficients méromorphes et pour lesquels les séries majorantes sont de type Dirichlet. On établit des résultats algébriques : caractérisation des éléments inversibles, théorèmes de division et de préparation. En les faisant opérer sur divers espaces de séries et de fonctions on obtient des théorèmes d’indices et des résultats de surjectivité. Après transformation de Mellin ces opérateurs permettent d’étudier les “solutions”...
Cet article reprend et complète la partie qui concerne les opérateurs pseudo- différentiels analytiques dans un travail fait en collaboration avec P. Krée (Ann. Inst. Fourier, 17-1 (1967), 295-323). En particulier la théorie est généralisée aux opérateurs d’ordre infini.
We introduce the notion of pseudo-differential operators defined at a point and we establish a canonical one-to-one correspondence between such an operator and its symbol. We also prove the invertibility theorem for special type operators.
The aim of this paper is to develop a theory of p-summing operators (between Banach spaces) in presence of an order structure given by a convex normal cone.