Displaying 1541 – 1560 of 1576

Showing per page

Orbits under a class of isometries of L¹[0,1]

Terje Hõim (2004)

Studia Mathematica

We study the orbits of isometries of L¹[0,1]. For a certain class of isometries we show that the set of functions f in L¹[0,1] for which the orbit of f under the isometry T is equivalent to the usual canonical basis e₁,e₂,e₃,... of l¹ is an open dense set. In the proof we develop a new method to get copies of l¹ inside L¹[0,1] using geometric progressions. This method does not use disjoint or relatively disjoint supports, which seems to be the most common way to get such copies. We also use this...

Order bounded composition operators on the Hardy spaces and the Nevanlinna class

Nizar Jaoua (1999)

Studia Mathematica

We study the order boundedness of composition operators induced by holomorphic self-maps of the open unit disc D. We consider these operators first on the Hardy spaces H p 0 < p < ∞ and then on the Nevanlinna class N. Given a non-negative increasing function h on [0,∞[, a composition operator is said to be X,Lh-order bounded (we write (X,Lh)-ob) with X = H p or X = N if its composition with the map f ↦ f*, where f* denotes the radial limit of f, is order bounded from X into L h . We give a complete characterization...

Order bounded orthosymmetric bilinear operator

Elmiloud Chil (2011)

Czechoslovak Mathematical Journal

It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator b : E × E F where E and F are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost f -algebras.

Order theory and interpolation in operator algebras

David P. Blecher, Charles John Read (2014)

Studia Mathematica

In earlier papers we have introduced and studied a new notion of positivity in operator algebras, with an eye to extending certain C*-algebraic results and theories to more general algebras. Here we continue to develop this positivity and its associated ordering, proving many foundational facts. We also give many applications, for example to noncommutative topology, noncommutative peak sets, lifting problems, peak interpolation, approximate identities, and to order relations between an operator...

Order-bounded operators from vector-valued function spaces to Banach spaces

Marian Nowak (2005)

Banach Center Publications

Let E be an ideal of L⁰ over a σ-finite measure space (Ω,Σ,μ). For a real Banach space ( X , | | · | | X ) let E(X) be a subspace of the space L⁰(X) of μ-equivalence classes of strongly Σ-measurable functions f: Ω → X and consisting of all those f ∈ L⁰(X) for which the scalar function | | f ( · ) | | X belongs to E. Let E(X)˜ stand for the order dual of E(X). For u ∈ E⁺ let D u ( = f E ( X ) : | | f ( · ) | | X u ) stand for the order interval in E(X). For a real Banach space ( Y , | | · | | Y ) a linear operator T: E(X) → Y is said to be order-bounded whenever for each u ∈ E⁺ the set...

Ordered analytic Hilbert spaces over the unit disk

Shengzhao Hou, Shuyun Wei (2008)

Studia Mathematica

Let f, g be in the analytic function ring Hol(𝔻) over the unit disk 𝔻. We say that f ⪯ g if there exist M > 0 and 0 < r < 1 such that |f(z)| ≤ M|g(z)| whenever r < |z| < 1. Let X be a Hilbert space contained in Hol(𝔻). Then X is called an ordered Hilbert space if f ⪯ g and g ∈ X imply f ∈ X. In this note, we mainly study the connection between an ordered analytic Hilbert space and its reproducing kernel. We also consider when an invariant subspace of the whole space X is similar...

Orlicz boundedness for certain classical operators

E. Harboure, O. Salinas, B. Viviani (2002)

Colloquium Mathematicae

Let ϕ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M Ω α , associated to an open bounded set Ω, to be bounded from the Orlicz space L ψ ( Ω ) into L ϕ ( Ω ) , 0 ≤ α < n. For functions ϕ of finite upper type these results can be extended to the Hilbert transform f̃ on the one-dimensional torus and to the fractional integral operator I Ω α , 0...

Orlicz bounds for operators of restricted weak type

Paul Alton Hagelstein (2005)

Colloquium Mathematicae

It is shown that if T is a sublinear translation invariant operator of restricted weak type (1,1) acting on L¹(𝕋), then T maps simple functions in L log L(𝕋) boundedly into L¹(𝕋).

Orlicz spaces for which the Hardy-Littlewood maximal operators is bounded.

Diego Gallardo (1988)

Publicacions Matemàtiques

Let M be the Hardy-Littlewood maximal operator defined by:Mf(x) = supx ∈ Q 1/|Q| ∫Q |f| dx, (f ∈ Lloc(Rn)),where the supreme is taken over all cubes Q containing x and |Q| is the Lebesgue measure of Q. In this paper we characterize the Orlicz spaces Lφ*, associated to N-functions φ, such that M is bounded in Lφ*. We prove that this boundedness is equivalent to the complementary N-function ψ of φ satisfying the Δ2-condition in [0,∞), that is, sups&gt;0 ψ(2s) / ψ(s) &lt; ∞.

Currently displaying 1541 – 1560 of 1576