Boundary value problems for differential equations with deviating arguments
We present some existence results for boundary value problems for first order multivalued differential systems. Our approach is based on topological transversality arguments, fixed point theorems and differential inequalities.
We study boundary value problems of the type Ax = r, φ(x) = φ(b) (φ ∈ M ⊆ E*) in ordered Banach spaces.
This paper surveys a number of recent results obtained by C. Bereanu and the author in existence results for second order differential equations of the form (ϕ(u'))' = f(t,u,u') submitted to various boundary conditions. In the equation, ϕ: ℝ → ≤ ]-a,a[ is a homeomorphism such that ϕ(0) = 0. An important motivation is the case of the curvature operator, where ϕ(s) = s/√(1+s²). The problems are reduced to fixed point problems in suitable function space, to which Leray-Schauder...
We study the existence of solutions to nonlinear boundary value problems for second order quasilinear ordinary differential equations involving bounded -Laplacian, subject to integral boundary conditions formulated in terms of Riemann-Stieltjes integrals.
The theory of quasimultipliers in Banach algebras is developed in order to provide a mechanism for defining the boundary values of analytic semigroups on a sector in the complex plane. Then, some methods are presented for deriving lower estimates for operators defined in terms of quasinilpotent semigroups using techniques from the theory of complex analysis.
Associated with some properties of weighted composition operators on the spaces of bounded harmonic and analytic functions on the open unit disk , we obtain conditions in terms of behavior of weight functions and analytic self-maps on the interior and on the boundary respectively. We give direct proofs of the equivalence of these interior and boundary conditions. Furthermore we give another proof of the estimate for the essential norm of the difference of weighted composition operators.
A normal Banach quasi *-algebra (,) has a distinguished Banach *-algebra consisting of bounded elements of . The latter *-algebra is shown to coincide with the set of elements of having finite spectral radius. If the family () of bounded invariant positive sesquilinear forms on contains sufficiently many elements then the Banach *-algebra of bounded elements can be characterized via a C*-seminorm defined by the elements of ().
We continue our study of topological partial *-algebras, focusing on the interplay between various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between strong and weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *-algebras, emphasizing the crucial role played by appropriate bounded elements, called ℳ-bounded. Finally,...