The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
222
In this note we provide regularity conditions of closedness type which guarantee some surjectivity results concerning the sum of two maximal monotone operators by using representative functions. The first regularity condition we give guarantees the surjectivity of the monotone operator S(· + p) + T(·), where p ɛ X and S and T are maximal monotone operators on the reflexive Banach space X. Then, this is used to obtain sufficient conditions for the surjectivity of S + T and for the situation when...
We present a new continuous selection theorem, which unifies in some sense two well known selection theorems; namely we prove that if F is an H-upper semicontinuous multivalued map on a separable metric space X, G is a lower semicontinuous multivalued map on X, both F and G take nonconvex -decomposable closed values, the measure space T with a σ-finite measure μ is nonatomic, 1 ≤ p < ∞, is the Bochner-Lebesgue space of functions defined on T with values in a Banach space E, F(x) ∩ G(x) ≠ ∅...
In this paper we first prove some coincidence and fixed point theorems for nonlinear hybrid generalized contractions on metric spaces. Secondly, using the concept of an asymptotically regular sequence, we give some fixed point theorems for Kannan type multi-valued mappings on metric spaces. Our main results improve and extend several known results proved by other authors.
Generalized and unified versions of coincidence or maximal element theorems of Fan, Yannelis and Prabhakar, Ha, Sessa, Tarafdar, Rim and Kim, Mehta and Sessa, Kim and Tan are obtained. Our arguments are based on our recent works on a broad class of multifunctions containing composites of acyclic maps defined on convex subsets of Hausdorff topological vector spaces.
In this paper, a set-valued mapping with G-KKM property is defined and a generalization of minimax theorem for set-valued maps with G-KKM property on generalized convex space is established. As a consequence of this results we verify the coincidence theorem for set-valued maps with G-KKM property on G-convex space. Finally, we apply our results to the best approximation problem and fixed point problem.
We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.
We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.
Currently displaying 21 –
40 of
222