The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 401 – 420 of 2730

Showing per page

Colouring polytopic partitions in d

Michal Křížek (2002)

Mathematica Bohemica

We consider face-to-face partitions of bounded polytopes into convex polytopes in d for arbitrary d 1 and examine their colourability. In particular, we prove that the chromatic number of any simplicial partition does not exceed d + 1 . Partitions of polyhedra in 3 into pentahedra and hexahedra are 5 - and 6 -colourable, respectively. We show that the above numbers are attainable, i.e., in general, they cannot be reduced.

Combinatorial and group-theoretic compactifications of buildings

Pierre-Emmanuel Caprace, Jean Lécureux (2011)

Annales de l’institut Fourier

Let X be a building of arbitrary type. A compactification 𝒞 sph ( X ) of the set Res sph ( X ) of spherical residues of X is introduced. We prove that it coincides with the horofunction compactification of Res sph ( X ) endowed with a natural combinatorial distance which we call the root-distance. Points of 𝒞 sph ( X ) admit amenable stabilisers in Aut ( X ) and conversely, any amenable subgroup virtually fixes a point in 𝒞 sph ( X ) . In addition, it is shown that, provided Aut ( X ) is transitive enough, this compactification also coincides with the group-theoretic...

Compact hyperbolic tetrahedra with non-obtuse dihedral angles.

Roland K.W. Roeder (2006)

Publicacions Matemàtiques

Given a combinatorial description C of a polyhedron having E edges, the space of dihedral angles of all compact hyperbolic polyhedra that realize C is generally not a convex subset of RE. If C has five or more faces, Andreev's Theorem states that the corresponding space of dihedral angles AC obtained by restricting to non-obtuse angles is a convex polytope. In this paper we explain why Andreev did not consider tetrahedra, the only polyhedra having fewer than five faces, by demonstrating that the...

Currently displaying 401 – 420 of 2730