Sur deux suites récurrentes du second ordre, linéaires et homogènes
The aim of this paper is to give a classification of the right-angled hyperbolic hexagons in the real hyperbolic space , by using a quaternionic distance between geodesics in .
Un polyèdre hyperbolique semi-idéal est un polyèdre dont les sommets sont dans l’espace hyperbolique ou à l’infini. Un polyèdre hyperbolique hyperidéal est, dans le modèle projectif, l’intersection de avec un polyèdre projectif dont les sommets sont tous en dehors de et dont toutes les arêtes rencontrent . Nous classifions les polyèdres semi-idéaux en fonction de leur métrique duale, d’après les résultats de Rivin dans [8] (écrit avec C.D.Hodgson) et [7]. Nous utilisons ce résultat pour retrouver...