The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Classical solids.

Farran, H.R., d'Azevedo Breda, A.M., Robertson, S.A. (1995)

Beiträge zur Algebra und Geometrie

Combinatorial lemmas for polyhedrons

Adam Idzik, Konstanty Junosza-Szaniawski (2005)

Discussiones Mathematicae Graph Theory

We formulate general boundary conditions for a labelling to assure the existence of a balanced n-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.

Combinatorial lemmas for polyhedrons I

Adam Idzik, Konstanty Junosza-Szaniawski (2006)

Discussiones Mathematicae Graph Theory

We formulate general boundary conditions for a labelling of vertices of a triangulation of a polyhedron by vectors to assure the existence of a balanced simplex. The condition is not for each vertex separately, but for a set of vertices of each boundary simplex. This allows us to formulate a theorem, which is more general than the Sperner lemma and theorems of Shapley; Idzik and Junosza-Szaniawski; van der Laan, Talman and Yang. A generalization of the Poincaré-Miranda theorem is also derived.

Currently displaying 1 – 20 of 31

Page 1 Next