The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the complement of a toric arrangement has the homotopy type of a minimal CW-complex. As a corollary we deduce that the integer cohomology of these spaces is torsionfree. We apply discrete Morse theory to the toric Salvetti complex, providing a sequence of cellular collapses that leads to a minimal complex.
Hyperbolic virtual polytopes arose originally as polytopal versions of counterexamples to the following A.D.Alexandrov’s uniqueness conjecture: Let K ⊂ ℝ3 be a smooth convex body. If for a constant C, at every point of ∂K, we have R 1 ≤ C ≤ R 2 then K is a ball. (R 1 and R 2 stand for the principal curvature radii of ∂K.) This paper gives a new (in comparison with the previous construction by Y.Martinez-Maure and by G.Panina) series of counterexamples to the conjecture. In particular, a hyperbolic...
We call metamorphosis of a given category an autoequivalence functor up to within natural equivalence. We show that, given a group G, the group of metamorphoses of the category of G-sets (as well as the corresponding group for ?sufficiently big? subcategories) may be naturally identified to the group of outer automorphism of G. We get by this way a natural description of a group of known operations on tessellations of a surface: the identity operation, the Poincaré duality, and four others which...
A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus greater than one. We prove that these metrics are actually realised by exactly one convex...
Nous donnons une méthode de construction de complexes polyédriques dans permettant de relier entre elles des grilles dyadiques d’orientations différentes tout en s’assurant que les polyèdres utilisés ne soient pas trop plats, y compris leurs sous-faces de toutes dimensions. Pour cela, après avoir rappelé quelques définitions et propriétés simples des polyèdres euclidiens compacts et des complexes, on se dote d’un outil qui permet de remplir de polyèdres -dimensionnels un ouvert en forme de tube...
Currently displaying 21 –
40 of
45