Random polytopes and the volume-product of symmetric convex bodies.
Nous donnons une méthode de construction de complexes polyédriques dans permettant de relier entre elles des grilles dyadiques d’orientations différentes tout en s’assurant que les polyèdres utilisés ne soient pas trop plats, y compris leurs sous-faces de toutes dimensions. Pour cela, après avoir rappelé quelques définitions et propriétés simples des polyèdres euclidiens compacts et des complexes, on se dote d’un outil qui permet de remplir de polyèdres -dimensionnels un ouvert en forme de tube...
It is well-known that the -th Riemann sum of a compactly supported function on the real line converges to the Riemann integral at a much faster rate than the standard rate of convergence if the sum is over the lattice, . In this paper we prove an n-dimensional version of this result for Riemann sums over polytopes.
All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.
Linear programming (LP) problems with uncertain objective function coefficients (OFCs) are treated in this paper. In such problems, the decision-maker would be interested in an optimal solution that has robustness against uncertainty. A solution optimal for all conceivable OFCs can be considered a robust optimal solution. Then we investigate an efficient method for checking whether a given non-degenerate basic feasible (NBF) solution is optimal for all OFC vectors in a specified range. When the...