Embedde minimal annuli in R3 bounded by a pair of straight lines.
Let be a noncompact Riemannian manifold of dimension . Then there exists a proper embedding of into by harmonic functions on . It is easy to find harmonic functions which give an embedding. However, it is more difficult to achieve properness. The proof depends on the theorems of Lax-Malgrange and Aronszajn-Cordes in the theory of elliptic equations.
It was observed by R. Kusner and proved by J. Ratzkin that one can connect together two constant mean curvature surfaces having two ends with the same Delaunay parameter. This gluing procedure is known as a “end-to-end connected sum”. In this paper we generalize, in any dimension, this gluing procedure to construct new constant mean curvature hypersurfaces starting from some known hypersurfaces.
We consider the Yamabe type family of problems , in , on , where is an annulus-shaped domain of , , which becomes thinner as . We show that for every solution , the energy as well as the Morse index tend to infinity as . This is proved through a fine blow up analysis of appropriate scalings of solutions whose limiting profiles are regular, as well as of singular solutions of some elliptic problem on , a half-space or an infinite strip. Our argument also involves a Liouville type theorem...
The introduction of the concepts of energy machinery and energy structure on a manifold makes it possible a large class of energy representations of gauge groups including, as a very particular case, the ones known up to now. By using an adaptation of methods initiated by I. M. Gelfand, we provide a sufficient condition for the irreducibility of these representations.