Displaying 241 – 260 of 283

Showing per page

How to unify the total/local-length-constraints of the gradient flow for the bending energy of plane curves

Yuki Miyamoto, Takeyuki Nagasawa, Fumito Suto (2009)

Kybernetika

The gradient flow of bending energy for plane curve is studied. The flow is considered under two kinds of constraints; one is under the area and total-length constraints; the other is under the area and local-length constraints. The fundamental results (the local existence and uniqueness) were obtained independently by Kurihara and the second author for the former one; by Okabe for the later one. For the former one the global existence was shown for any smooth initial curves, but the asymptotic...

Hypercomplex Algebras and Geometry of Spaces with Fundamental Formof an Arbitrary Order

Mikhail P. Burlakov, Igor M. Burlakov, Marek Jukl (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The article is devoted to a generalization of Clifford and Grassmann algebras for the case of vector spaces over the field of complex numbers. The geometric interpretation of such generalizations are presented. Multieuclidean geometry is considered as well as the importance of it in physics.

Hyperholomorphic connections on coherent sheaves and stability

Misha Verbitsky (2011)

Open Mathematics

Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant...

Currently displaying 241 – 260 of 283